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I. INRTODCUCTION

This Idea Award (DAMDI17-03-1-0023, entitled “Intensity Modulated Radiation Treatment of
Prostate Cancer Guided by High Field MR Spectroscopic Imaging”) was awarded to the principal
investigator (PI) for the period of May 1, 2003—April 30, 2006. This is the final report for the grant. The
goal of this project is to establish biologically conformal - as opposed to anatomically conformal - IMRT as
a viable modality through integration with 3T magnetic resonance spectroscopic imaging (MRSI) to more
effectively kill prostate tumor cells. The underlying hypothesis driving this work is that the MRSI-guided
IMRT will provide substantially improved dose distributions required to achieve greater local tumor
control while maintaining, or reducing, complications to sensitive structures. The specific aims of the
project are: (1) To establish a robust procedure for registering and mapping of MR spectroscopic data to
CT/MRI images for prostate irradiation. (2) To develop an inverse planning system for MRSI-guided
IMRT prostate treatment and demonstrate the feasibility of concurrent dose escalation to intraprostatic
lesion(s) through a set of phantom studies and at least two previously treated prostate cases who had
undergone CT/MRSI scans. Under the generous support from the U.S. Army Medical Research and
Materiel Command (AMRMC), the PI has contributed significantly to prostate cancer research by applying
physics and engineering knowledge to prostate cancer research. A number of significant conference
abstracts and refereed papers have been resulted from the support. The preliminary data obtained under the
support of the grant has also enabled the PI to start new research initiatives, in particularly, in adaptive

prostate radiation therapy. The past year’s research activities of the PI are highlighted in the following.

II.RESEARCH AND ACCOMPLISHMENTS
In current clinical practice, radiation treatment planning, performed under the guidance of MRI or
CT images, is aimed at delivering a uniform dose to the whole prostate gland. This treatment scheme
tacitly assumes that biology distribution in the prostate target is spatially uniform, mainly because of the

1-3
. In

lack of an effective imaging tool to differentiate regions of cancer and normal prostatic epithelium
reality, because radiation is toxic, the conventional treatment method often leads to clinically significant
side effects and complications. Furthermore, the approach seriously limits the dose deliverable to the
cancerous cells because the risk of developing later gastrointestinal and genitourinary complications
increases significantly as the dose to the prostate is escalated. Therefore, many patients are treated with
sub-optimal doses despite of the well-known fact that the survival probability of the patients can be greatly

enhanced if radiation dose could be escalated. New treatment schemes are necessary to safely escalate

radiation dose to the prostate without damaging the sensitive structures.

4
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Recent developments of functional/metabolic imaging techniques are making it increasingly
possible to identify the cancerous region(s) in the prostate*®. Simultaneously, a new modality of radiation
therapy, intensity modulated radiation therapy (IMT) " ¥ has recent emerged, which provides us with
unprecedented means to produce customized 3D dose distributions with sub-centimeter resolution. The
goal of this project is to develop enabling tools for integrating MRSI and IMRT to selectively escalate
radiation doses to the intraprostatic lesions. Successful completion of the project will lay the foundation for
the next generation IMRT treatment of prostate cancer and provide radiation oncologists with a
significantly improved means of delivering biologically conformal doses of ionizing radiation to the
prostate gland while maintaining or reducing the dose to the adjacent bladder and rectum. When fully
implemented, the system will allow us to destroy tumor cells more intelligently without unnecessarily
compromising the tolerance of the adjacent normal structures. It will thus have widespread impact on
prostate cancer management.

Toward improving prostate radiotherapy we have made significant progress in integration of various
novel imaging modalities into treatment planning process and contributed greatly in the battle against
prostate cancer. The stated goals of the proposed study have been fulfilled completely and several new

initiatives are resulted. The research accomplishments are summarized below.

II.1 Refinement of 3T endorectal-coil based MRSI data acquisition techniques: Robust prostate MRSI
plays an important role in biologically conformal radiation therapy (BCRT)’. We have made effort in
enhancing the performance of 3T MRSI data acquisition developed by our group®. Our method is based on a
2D J-resolved acquisition to better identify the citrate and choline resonances. These radio frequency (RF)
pulses, consisting of a match 90-180 spectral spatial pair, are optimized for choline imaging while
minimizing peak RF power constraints that typically limit 3T body MRI. We have systematically and
quantitatively evaluated the 3T volumetric spiral MRSI pulse sequences and optimized the sequence for
high spatial resolution, minimum acquisition time, and maximum information content. The sequence for
imaging choine and citrate has been tested on several subjects. The new imaging tool showed significant
potential for improved treatment target definition. This work has been published in Magnetic Resonance

Imaging in Medicine (Apendex-1).

I1.2 Development of image registration techniques: Image registration is at the foundation of multi-
modality image-guided radiation therapy because it is a necessary step to map imaging information

acquired by a new imaging modality onto simulation CT images for treatment panning. We have provided
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viable solutions to this longstanding problem and substantially improved the current rigid and deformable
image registration techniques. Progress includes: (i) control-volume based image registration'®; (ii)
multistage image registration'" '%; and (iii) deformable registration with incorporation of a priori system
knowledge'’. Several important papers on the subject have been published or submitted for publication
(Appendix-3, -5, -6, -7, and —10). In (i), we proposed a technique that allows us to automate the selection
of control point pairs in conventional landmark based registration. In this approach, instead of attempting
to find the correspondences of the control regions in the reference image through user interaction, we map
each control volume to the corresponding parts of the reference image by using an automated image
registration algorithm. The conventional automated image registration algorithm is then used to complete
the image registration process with the guidance of auto-determined control points. The approach is robust
and has great potential for clinical MRI/MRSI-CT registration (Apendix-6). In (ii), a multiscale image
registration technique is developed for the registration of medical images that contain significant levels of
noise (Apendix-5 and —10). Experiments using mean squares, normalized correlation, and mutual
information optimal linear registration are presented that determine the noise levels at which registration
using these techniques fails. Further experiments in which classical denoising algorithms are applied prior
to registration are presented, and it is shown that registration fails in this case for significantly high levels
of noise, as well. In (iii), we investigated a strategy of using a priori knowledge of the system to reduce
the dimensionality of the deformable image registration problem and to speed up the registration
calculation. Conventional deformable registration treats all image volume equally and the calculations are
“brute-force” in nature. In reality, some regions can be mapped between the moving and fixed images
with higher confidence than others. This knowledge is incorporated to greatly facilitate the BSpline (or
other models) deformable calculation. In the process of warping the moving image to optimally match the
two input images, only those deformations that do not modify the pre-established associations of the
control volumes are permissible. This significantly reduces the search space and improves the
convergence behavior of the gradient-based iterative optimization calculation. The proposed algorithm is
evaluated by using digital phantoms and patient CT images. The deformable registration algorithm
developed in this project was also applied to several other image-guided radiation therapy projects, such

14, 15

as radiation dose reduction in 4D CT , image interpolation in 4D CT'¢, onboard CT-based prostate

IMRT dose validation (this work will be published in Jan. 2007 issue of Physics in Medicine and Biology,

see Apendix-9 for detail) and electron density mapping from simulation CT to CBCT'"'®.
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11.3 Inverse planning for biologically conformable radiation therapy (BCRT): 1t is well known that the
spatial biology distribution in most tumors and sensitive structures is heterogeneous'>. Recent progress in
biological imaging including MRSI is making the mapping of this distribution increasingly possible. We
have established a theoretical framework to quantitatively incorporate the spatial biology data into IMRT
inverse planning (Appendix-2). We, for the first time, derived a general formula for determining the
desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic
(LQ) model” . The desired target dose distribution was then used as the prescription for inverse
planning. An objective function with the voxel-dependent prescription was constructed with incorporation
of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also
considered phenomenologically when constructing the objective function. Our calculations revealed that it
is technically feasible to produce deliberately nonuniform dose distributions with consideration of
biological information. A comparison of the new planning scheme with that of existing techniques
suggested that the new BCRT technique significantly improves the tumor control probability (TCP) while
reducing or keeping the normal tissue complication probability (NTCP). Contractually, this study
completes the tasks 3.1 and 3.2 (together with study I1.4 described below). BCRT incorporates patient
specific biological information and provides an outstanding opportunity for us to truly individualize

radiation treatment and to intelligently escalate dose in prostate radiation therapy.

11.4 Image guided adaptive IMRT for improved prostate cancer treatment: With the development of
highly conformal prostate radiation therapy techniques such as IMRT and BCRT, how to accurately
deliver the high radiation dose to the prostate target(s) and verify the dose distribution while sparing the
sensitive structures becomes a major concern. To ensure what is planned on computer can be realized in a
clinical setting, we have (a) performed a series of dosiemtric measurements to validate the spatially non-
uniform doses generated using BCRT inverse planning, and (b) developed an adaptive strategy for
improved prostate radiotherapy (Appendix-8, -9, -11 and -12). Newly emerged onboard cone beam CT
(CBCT) is used to acquire the volumetric anatomical information of a patient prior to treatment on a
routine basis. The IMRT treatment plan is then adaptively modified with consideration of organ
deformation and delivered doses. An inverse planning system based on dynamic optimization algorithm

d ** 2! Image transfer from the Varian Trilogy accelerator with onboard CBCT

has been establishe
capability has been established and dosimetric validation strategy has been developed™**. With the image
registration technique described above, the CBCT can be registered to the simulation CT so that the

prostate and seminal vesicle (SV) targets, the involved sensitive structures, and biologically active tumor
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regions identified by MRSI can be mapped to the CBCT for adaptive replanning. The registration
technique (Apendix-6 and —7) is also employed to establish a voxel-to-voxel correspondence between the

CT/CBCTs for the cumulative dose calculation. With the margins used in current prostate IMRT, we

23,24

found that SV, bladder and rectum doses benefited most from the adaptive therapy basis™ ~". In addition,

our study suggested that correcting the patient’s daily setup just through the translation and rotation is

often not enough and accounting for the organ deformation is important, especially if the target margin is

to be reduced for dose escalation or for hypofractionated treatment™>*,

III. KEY RESEARCH ACCOMPLISHMENTS
o Refined the endorectal coil-based 3T MRSI technique for prostate imaging.
J Provided viable solutions to the longstanding deformable image registration problem and made it
possible to accurately map MRI/MRSI information to treatment planning CT images.
o Setup a novel framework for BCRT inverse planning.
o Developed inverse planning system for onboard CBCT based adaptive IMRT planning.
. Established a procedure for BCRT dose verification and image guided adaptive prostate IMRT.

IV. REPORTABLE OUTCOMES
The following is a list of publications resulted from the grant support during the last funding cycle.
Copies of the publication materials are enclosed with this report.
Refereed publications:

1. Kim D, Mayer D., Xing L, Daniel B, Margolis, D., Spielman D., “In vivo detection of citrate for
prostate cancer at 3 Tesla”, Magnetic Resonance Imaging in Medicine, 53, 1177-1182, 2005.

2. Yang Y and Xing L: “Towards biologically conformal radiation therapy (BCRT): selective IMRT dose
escalation under the guidance of spatial biology distribution . Medical Physics 32, 1473-84, 2005.

3. Schreibmann E and Xing L: “Narrow band deformable registration of prostate MRI/MRSI and CT
studies”. International Journal of Radiation Oncology, Biology, Physics 62, 595-605, 2005.

4. Schreibmann E and Xing L: “Dose-volume based ranking of incident beam directions and its utility in
facilitating IMRT beam placement”. International Journal of Radiation Oncology, Biology, Physics
63, 584-593, 2005.

5. Paquin D, Levy D, Schreibmann E., Xing L, Multistage image registration, Mathematical Biosciences
and Engineering 3, 389-418, 2006.

6. Schreibmann E, and Xing L: “Image registration with auto-mapped control volumes”. Medical
Physics 33, 1165-79, 2006.

7. Schreibmann E, Chen G, and Xing L: “Image interpolation in 4D CT”. International Journal of
Radiation Oncology, Biology, Physics 64, 1537-1550, 2006.

8. Pawlicki T., Kim G, Hsu A, Cortutz C, Boyer A, Xing L, King C.R., Luxton G, Investigation of Linac-
based Image-guided Hypofractionated Prostate Radiotherapy, Medical Dosimetry 31, 91-122, 2006.
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9. Loo B, Draney MT, Sivanadan R, Ruehm S, Pawlicki T, Xing L, Hertkens RJ, Q.T. Le: “Indirect MR
lymphangiography using conventional gadolinium contrast”, International Journal of Radiation
Oncology, Biology, Physics, in press, 2006.

10. Xing, L, Thorndyke B, Schreibmann E, Li T, Yang Y, Kim G., Luxton G, Koong, A, Overview of
image guided radiation therapy (IGRT), Medical Dosimetry (invited review) 31, 91-122, 2006.

11. Thorndyke B, Schreibmann E., Koong A., and Xing L: “Enhancing the performance of 4D PET
imaging by retrospective stacking”. Medical Physics 51, in press, 2006.

12. Li T, Munro P, McGuiness C, Yang Y, Chao M, Loo B, and Koong A, Xing L, Four-dimensional
cone-beam computed tomography using an onboard imager, Medical Physics 33, submitted, 2006.

13. Chao M, Schreibmann E., Li T, Xing L, Automated contour mapping for IGRT, Medical Physics,
submitted, 2006.

14. Paquin D, Levy D, Xing L, Multistage deformable image registration, /EEE Trans Med Imag,
submitted, 2006.

15. Yang Y, Schreibmann E., Li T, Xing L, Evaluation of dosimetric accuracy of kV cone beam CT-based
dose calculation, Physics in Medicine and Biology, in press (to appear in Jan. 2007).

Book Chapters:

1. Xing L, Yang Y, and Spielman D, Molecular/Functional Image-Guided Radiation Therapy, in IMRT
Handbook and Clinical Applications, T. Bortfeld, R. Schmidt-Ulrich, We De Neve (editors), Springer-
Verlag Heidelberg, Berlin, 187-198, 2006.

2. LilJand Xing L, Radiation Dose Planning, Computer-Aided, in Encyclopedia of Medical Devices and

Instrumentation, John G. Webster (editor), John Wiley & Sons, in press.

Conference abstract:

1.

2.

10.

11.

12.

Xing, L. and Spielman D, Integration of MRI/MRSI into Radiation Therapy Treatment Planning, 2005
AAPM Annual Meeting, Seattle, WA (invited talk).

Schreibmann E. and Xing L., Registration of prostate MRI/MRSI and CT studies using narrow band
approach, 2005 AAPM Annual Meeting, Seattle, WA.

Schreibmann E. and Xing L., EUD-based beam orientation optimization, 2005 AAPM Annual
Meeting, Seattle, WA.

Xing L, Levy, D. and Yang Y., Incorporating clinical outcome data into inverse treatment planning,
2005 AAPM Annual Meeting, Seattle, WA.

Yang Y. and Xing L, Prescription for biologically conformal radiation therapy, 2005 AAPM Annual
Meeting, Seattle, WA.

Schreibmann E, and Xing L: “Image registration with auto-mapped control volumes”. 2005 ASTRO
annual meeting, Denver, CO.

Yang Y and Xing L: “Optimization of radiation dose-time-fractionation scheme with consideration of
tumor specific biology”. 2005 ASTRO annual meeting, Denver, CO.

Yang Y, Levy D, and Xing, L, Relationship between EUD-based and dose-based inverse planning,
2006 AAPM Annual Meeting, Orlando, FL, 2006.

Y Yang, N Yue, W Fu, X Li, D Heron, M Hugq, L Xing, Time-Resolved 4D Dynamic Arc Therapy,
2006 AAPM Annual Meeting, Orlando, FL, 2006.

M Chao, E Schreibmann, T. Li, L. Xing, Knowledge-Based Auto-Contouring in 4D Radiation
Therapy, 2006 AAPM Annual Meeting, Orlando, FL, 2006.

Q Xu, Z He, R Hamilton, L Xing, Registration of X-Ray Portal Images with 4DCT DRRs for Patient
Setup Verification, 2006 AAPM Annual Meeting, Orlando, FL, 2006.

A de la Zerda, B Armbruster, L Xing, A New Dose Optimization Algorithm for Adaptive Radiation
Therapy, 2006 AAPM Annual Meeting, Orlando, FL, 2006.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M Chao,T Li, L Xing, Enhanced 4D CBCT Imaging for Slow-Rotating On-Board Imager, 2006
AAPM Annual Meeting, Orlando, FL, 2006.

E Schreibmann, B Thorndyke, L Xing, Intra- and Inter-Modality Registration of Four-Dimensional
(4D) Images, 2006 AAPM Annual Meeting, Orlando, FL, 2006.

B Armbruster, A de la Zerda, L Xing, A New 4D IMRT Algorithm and Its Performance Analysis,
2006 AAPM Annual Meeting, Orlando, FL, 2006.

A Hsu, B Thorndyke, T Pawlicki, L Xing, Accuracy of Gated IMRT Delivery On the Varian Linac
Using the Real-Time Position Management System, 2006 AAPM Annual Meeting, Orlando, FL, 2006.
T Li, L Xing, P Munro, Y Yang, B Loo, A Koong, 4D Cone-Beam CT (CBCT) Using An On-Board
Imager, 2006 AAPM Annual Meeting, Orlando, FL, 2006.

C Wang, L Xing, Evaluation of Kv CBCT-Based Dose Verification, 2006 AAPM Annual Meeting,
Orlando, FL, 2006.

E Schreibmann, W Cai, X Chen, L Xing, Voxel-Based MicroCT-MicroPET Image Registration for
Molecular Imaging Study, 2006 AAPM Annual Meeting, Orlando, FL, 2006.

S Kamath, E Schreibmann, L Xing, Deformable Image Registration with Auto-Mapped Control
Volumes, 2006 AAPM Annual Meeting, Orlando, FL, 2006.

Daly M, Lieskovsky Y, Pawlicki T, Yau J, Pinto H, Kaplan M, Fee W, Koong A, Goffinet D, Xing L,
Le Q, Evaluation of patterns of failure and subjective salivary function in patients treated with IMRT
for head and neck squamous cell carcinomas, 2006 ASCO Annual Meeting, Atlanta, GA, 2006.

Yang Y, Levy D, and Xing, L, Voxel-based penalty scheme for IMRT inverse planning, 2006 World
Congress on Medical Physics and Bioengineering, Seoul, Korea, 2006.

Xing, L. and Spielman D, MRI/MRSI and Radiation Therapy Treatment Planning, 2006 World
Congress on Medical Physics and Bioengineering, Seoul, Korea, 2006 (invited talk).

Xing, L., Li T, Thorndyke B, Schreibmann E., Chao M., and Spielman D, Integration of Molecular
Imaging into Radiation Therapy Treatment Planning, 2006 AAPM Annual Meeting, Orlando, FL
(invited talk).

Chao M, Schreibmann, Li T, and Xing L: “Automated contour mapping for IGRT”. 2006 ASTRO
annual meeting, Philadelphia, PA.

Kamath S, Schreibmann E, and Xing L: “Automated contour mapping for IGRT”. 2006 ASTRO
annual meeting, Philadelphia, PA.

A de la Zerda,, B Armbruster, and Xing L: “Inverse planning for adaptive radiation therapy”. 2006
ASTRO annual meeting, Philadelphia, PA.

Xing L, A de la Zerda, B Armbruster, Li T, Chao M, Hancock S, King C.: “Adaptive radiation therapy
for improved prostate radiation therapy”. 2006 ASTRO annual meeting, Philadelphia, PA.

Xing L, “Image guided radiation therapy”, 2006 ASTRO annual meeting, Philadelphia, PA (invited
talk).

V. CONCLUSION

In this project we have successfully completed all tasks listed in the Statement of Work of the

proposal. We have shown that biologically conformable radiation therapy (BCRT) is technically feasible

and advantageous as compared with current treatment strategy. Coupled with biological imaging

techniques such MRSI, the approach has significant potential to substantially improve the existing prostate

radiation therapy. The technical tools developed in this project greatly facilitate the planning, delivery, and

quality assurance of the MRSI-guided prostate treatment. Translation of the newly developed techniques to

10



DOD Prostate Cancer Research Program Principal Investigator:.___Lei Xing, Ph.D.

routine clinical practice is being planned at our Hospital and it is expected that these techniques will lead to

positive impact to clinical prostate management worldwide.
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In Vivo Prostate Magnetic Resonance Spectroscopic
Imaging Using Two-Dimensional J-Resolved PRESS at 3 T

Dong-hyun Kim,'* Daniel Margolis,' Lei Xing,” Bruce Daniel,' and Daniel Spielman®

In vivo magnetic resonance spectroscopic imaging of the pros-
tate using single-voxel and multivoxel two-dimensional (2D)
J-resolved sequences is investigated at a main magnetic field
strength of 3 T. Citrate, an important metabolite often used to
aid the detection of prostate cancer in magnetic resonance
spectroscopic exams, can be reliably detected along with the
other metabolites using this method. We show simulations and
measurements of the citrate metabolite using 2D J-resolved
spectroscopy to characterize the spectral pattern. Further-
more, using spiral readout gradients, the single-voxel 2D J-
resolved method is extended to provide the spatial distribution
information as well all within a reasonable scan time (17 min).
Phantom and in vivo data are presented to illustrate the
multivoxel 2D J-resolved spiral chemical shift imaging
sequence. Magn Reson Med 53:1177-1182, 2005. © 2005
Wiley-Liss, Inc.

Key words: magnetic resonance spectroscopic imaging; pros-
tate cancer; spiral readout gradients; 2D J-resolved spectros-
copy; citrate; polyamine

In addition to the morphologic information provided by
magnetic resonance imaging, the additional information
gained using magnetic resonance spectroscopy (MRS) and
magnetic resonance spectroscopic imaging (MRSI) in-
creases the specificity of the examination for prostate can-
cer (PCa). In these examinations, the ratio of (choline +
creatine) to citrate is often regarded as a marker for PCa (1).
To date, MRSI protocols for PCa detection have been well
established at a main magnetic field strength of 1.5 T (2).

The advent of higher field strength scanners provides
the potential for improvement over 1.5-T systems due to
the inherent increase in the signal-to-noise ratio (SNR). For
PCa exams using MRS/MRSI methods, this advantage can
be exploited in various forms, which include using higher
spatial resolution acquisitions to increase the accuracy of
localization of the cancerous tissues (3). Scan times can
also be made shorter compared to 1.5 T for the same SNR,
thereby reducing the overall MR examination time. The
extension of 1.5-T MRS/MRSI protocols for usage in 3-T
PCa can therefore have potential merits.
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However, the process of advancing to higher field
strength requires several considerations. For clinical
prostate examinations using spectroscopic techniques,
one of the issues that arise involves the detection of the
citrate metabolite. Strong coupling of the AB system of
citrate induces echo-time-dependent modulations of the
signal response, which differs significantly with field
strength (4,5). One method which exploits the echo time
dependencies is the 2D J-resolved spectroscopic se-
quence (6—8). Acquisitions at incremental echo times
can be gathered to obtain the coupling information of
such metabolites. Information of uncoupled metabolites
can also be gathered. Another advantage of using 2D
J-resolved sequences in the case of prostate is the poten-
tial to separate the polyamine metabolite from the cre-
atine and choline peaks (9,10). The three metabolites
resonate at similar frequencies, which make them hard
to differentiate using normal acquisitions. But, since the
polyamines are also strongly coupled, the 2D J-resolved
method can provide additional information, which can
be used to distinguish between creatine and choline. In
addition, 2D J-resolved spectroscopy has been used to
reduce sideband artifacts for applications in the brain
and regions outside of the brain such as the breast
(11,12). Finally, the acquisitions from multiple echo
times can also help determine the T, values of metabo-
lites of interest in addition to water.

To take full advantage of this method, collecting the
spatial distribution information of the metabolites will
be preferred over single-voxel techniques. Although
phase encoded MRSI methods have been used in obtain-
ing the spatial information, this can be problematic
when combining with the 2D J-resolved method since
the minimum total scan time will be increased propor-
tional to the number of echo time steps used. Therefore,
a different approach that can reduce the minimum total
scan time needs to be established. One of the spatial
encoding methods that achieve such characteristic is the
spiral readout MRSI (13). Using spiral MRSI, the spatial
coverage can be controlled with high efficiency, thereby
significantly decreasing the minimum total scan time
compared to the phase encoded method. The additional
time available can therefore be used to gather the 2D
J-resolved spectroscopic data (14,15).

This work involves the study of 2D J-resolved single-
voxel and multivoxel spectroscopic acquisition methods
targeted for clinical application of PCa detection. We first
explore the use of a 2D J-resolved single-voxel spectro-
scopic sequence to illustrate the detection of the citrate
metabolite and to observe the characteristics of the J-cou-
pled spectral pattern. Multivoxel 2D J-resolved acquisi-
tions are performed using spiral-based MRSI.
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METHODS

Simulations and phantom measurements were conducted
assuming a 2D J-resolved acquisition using a PRESS exci-
tation scheme. For the simulations, we solved the full
density matrix of strongly coupled two-spin systems with
nonselective 180° pulses. The timing of the PRESS se-
quence was assumed to be 90°—[¢,,,,]-180°—[t,/2]-180°—[t,/
2 — t;J—t, (acquire), where t;,, was 10 ms. The J-coupling
constant was assumed to be 15.4 Hz with a chemical shift
value of 0.12 ppm (= 16.6 Hz at 3 T) (16). Also, the T, was
assumed to be 200 ms with a line width of 10 Hz. For the
actual single-voxel 2D J-resolved measurements, a phan-
tom composed of citrate, creatine, and choline metabolites
was used to emulate the existence of cancerous tissue. In
both cases, the echo time spacing was adjusted to be 7.8 ms
for a total of 64 steps from 35 to 534 ms in the F1 domain
(Fourier domain corresponding to t; dimension). This re-
sulted in a 2-Hz spectral resolution with a bandwidth of
128 Hz in the F1 domain. The spectral bandwidth in the F2
domain (Fourier domain corresponding to f, dimension)
was 5000 Hz with 2048 data point acquisitions.

In vivo data were collected from a patient suspicious for
recurrent PCa using the single-voxel 2D J-resolved tech-
nique. Single-voxel 2D J-resolved spectroscopic data using
the PRESS sequence were acquired from two different
regions near the peripheral zone of the prostate. All PRESS
sequences were preceded by CHESS water suppression
and very selective saturation pulses for spatial saturation
(17). The voxel size chosen was 1 X 1.12 X 1.08 cm =
1.2 cc. Four acquisitions were averaged per incremental
echo time for a total scan time of 8 min (TR = 2 s) for each
voxel.

Multivoxel 2D J-resolved data using spiral MRSI were
also acquired. A detailed description of the spiral MRSI
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sequence can be found in Ref. 14. First, phantom data were
collected to demonstrate the feasibility of obtaining spatial
as well as the coupling information followed by in vivo
data collection. Spiral readout gradients were applied to a
PRESS excitation sequence. The spirals were designed
using the formula given by Glover (18). A 32 X 32 spatial
matrix covering a 24-cm field of view was used. Sixteen
spatial interleaves of the spirals were used to acquire the
required k-space. The number of spirals repeated during
each acquisition was 256 lobes, which resulted in a 950-Hz
spectral bandwidth in the F2 domain. Sixteen different
echo times starting from 35 to 285 ms with 15.6-ms inter-
vals were used to collect F1 domain information, which
accounted for F1 spectral resolution of 4 Hz and a band-
width of 64 Hz. Collected data were processed by first
gridding in the k,, k,, and t, domains followed by a four-
dimensional FT into the x, y, F1, and F2 domains. In
summary, each of the 32 X 32 reconstructed voxels had 16
spectra, which covers the F1 dimension from J(—32) Hz to
J(28) Hz. The nominal voxel size was 0.59 cc while the
total scan time to acquire the necessary k-space and the £,
space data was 17 min (TR = 2 s).

For the multivoxel 2D J-resolved experiment, phantom
data were acquired using the head coil while in vivo data
were collected with the body coil for excitation followed
by a rigid endorectal coil for signal reception. A phantom
comprised of creatine, choline, and citrate solution was
built for this study, which was surrounded by lipids to
confirm the lipid suppression capabilities. For the in vivo
exams, a high-resolution (512 X 512) T,-weighted ana-
tomic image was obtained and a region of interest covering
most of the prostate was selected for the PRESS sequence.
To date, seven patients who were suspicious of prostate
cancer were referred to by a pathologist and imaged using

FIG. 1. 2D J-resolved spectra obtained from sim-
ulations (left) and phantom measurements (right) at
3 T. The echo time interval was 7.8 ms starting
from 35 ms for 64 steps. Choline and creatine
metabolites were added for the phantom measure-
ment. Due to the modulations as a function of echo
time, the 2D J-resolved spectra show a strong
signal from the citrate metabolite at reconstructed
lines beyond the J(0) Hz line for both simulated and
measured data with similar spectral patterns. In
this respect, the detection of the citrate resonance
can be made outside of the J(0) Hz line using the
2D J-resolved acquisition.

25 2 ppm
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FIG. 2. Single-voxel 2D J-resolved spec-
troscopy results obtained in vivo from a
subject suspicious of recurrent PCa. Two
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voxels were selected for the examination as
shown in the T,-weighted images. The re-

A J(14) B i s

constructed spectra of several F1 lines are
shown. In (a), even though the presence of
creatine and choline metabolites is evident,
there is no visible citrate. As for the region
shown in (b), the citrate is visible (2.6 ppm
region from J(—10) to J(12) Hz line) in the
spectra while other metabolites are also
present. This shows that the 2D J-resolved
spectroscopy can be useful for in vivo de-
tection of citrate.
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a 3 T GE Signa scanner (GE Health Care, Waukesha, WI).
All in vivo studies were conducted under IRB guidelines
and with informed consent.

RESULTS

Figure 1 shows the simulated 2D J-resolved citrate spectra
(left) along with the reconstructed 2D J-resolved data ac-
quired with a phantom (right) using the single-voxel 2D
J-resolved acquisition. Spectra corresponding to the F1
domain in the range of J(—12) to J(12) Hz were extracted
where most of the energy is concentrated. In both cases,
due to the modulations occurring as a function of echo
time, resonances are clearly seen beyond the J(0) line for
the citrate metabolite. Individual spectra from each F1 line
reveal the similarity of the patterns between the simulated
and measured results of the citrate. The J(0) line, also
referred to as the TE-averaged line, has a slight negative
peak at the citrate position, which is due to the strong
negative peaks at echo times ranging from 60 to 120 ms.
Two single-voxel 2D J-resolved spectra from an in vivo
subject are presented in Fig. 2. The patient had a prior
history of prostatic adenocarcinoma, which was treated by
external beam radiation. The two regions that were se-
lected are shown in the anatomic T,-weighted images
along with the resulting J-resolved spectra. The spectra

25 2 ppm 35 3 25 2 ppm

obtained from the right side of the subject (Fig. 2a) dis-
plays negligible citrate metabolite intensity compared to
the creatine and choline resonances located near the
3.0-ppm region. In comparison, the spectra from the left
side of the subject (Fig. 2b) reveal the presence of citrate as
seen from the modulations occurring in the reconstructed
F1 lines along with the creatine and choline metabolites.
These two comparisons show that with the 2D J-resolved
acquisition method, the strongly coupled citrate metabo-
lite can be resolved while the presence of other metabo-
lites can be established. Even though the number of radio-
frequency (RF) phase cycling steps has been reduced to 4
in this case, strong residual signal from outside of the
PRESS box is not observed.

In Fig. 3, results obtained from the multivoxel 2D J-
resolved sequence via spiral MRSI are shown. In Fig. 3a,
an image of the phantom that was used for the experiment
is given. In Fig. 3b, the metabolite spectra corresponding to
the voxel selected in Fig. 3a are given. We extracted the
TE-averaged line from each reconstructed voxel and man-
ually phased them. The TE-averaged spectra show the
well-resolved spatial distribution of the metabolites with a
slight negative peak of the citrate as in the case of the
single-voxel experiment. Spatial saturation pulses elimi-
nated most of the lipids, as can be seen from the absence of
any sidebands arising from the lipids. In Fig. 3c, lines from
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J(—28) to J(32) Hz that were reconstructed for the voxel
highlighted in Fig. 3b are shown. The J-resolved F1 do-
main lines clearly depict the presence of citrate located
near the 2.5-ppm region.

Figure 4 shows spiral readout 2D J-resolved MRSI re-
sults obtained from an in vivo subject who had been re-
ported as having a Gleason score of 3 + 3. The T,-weighted
image is shown in Fig. 4a with a grid representing the
displayed voxels shown in Fig. 4b and c. Reconstructed
spectra corresponding to the TE-averaged lines are given
in Fig. 4b. As with the case of the phantom experiment, the
TE-averaged line largely represents spectra from metabo-
lites that are uncoupled. This is illustrated by the exis-
tence of choline and creatine metabolites that can be seen
near the middle region of the displayed voxels. In Fig. 4c,
the spectra corresponding to J(8) Hz are displayed where
the citrate metabolite can be resolved. This is illustrated
near the upper left region of the prostate where several
voxels show a peak near the 2.5 ppm region, which corre-
sponds to the citrate metabolite. For several voxels, how-
ever, lipid contamination can be visible near the 2.5-ppm
region, which compromised the detection of citrate.

Figure 5 shows spiral readout 2D J-resolved MRSI re-
sults obtained from another in vivo subject who had been
reported as having adenocarcinoma of the prostate with a
Gleason score of 3 + 4. The TE-average lines in Fig. 5a
show voxels of signal contributing from creatine and cho-
line as well as polyamines residing in J(0) Hz. In Fig. 5c,
the spectra corresponding to J(8) Hz line are displayed.
The spectra show clear visualization of the citrate metab-
olite. In addition, polyamines are seen to be resolved as
well. Of the seven patients examed, five patients had ob-
servable signal from any of the metabolites of interest.

c
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J24)

e J(20)

e J(16)

Kim et al.

J12)
J(8)
J4)
J(@)Hz FIG. 3. Phantom results using
J(4) spiral based multivoxel 2D J-re-

e A J(12)

solved MRSI. A metabolite phan-
tom surrounded by lipid and wa-

M.. jgg; ter was used (a). In (b), the metab-
J(24) olite spectra corresponding to
J(28) J(0) Hz are displayed from the se-
J(32) lected voxels shown in (a). The
L . L L TE-averaged spectra show the
35 3 25 2 (ppm) well-resolved spatial distribution
of the metabolites. In (c), all the
reconstructed F1 lines for the
voxel highlighted in (b) are shown.
The F1 domain lines clearly depict
the presence of citrate near the

2.5-ppm region.

DISCUSSION

We have shown the application of a 2D J-resolved PRESS
sequence, which can aid the detection of PCa at the field
strength of 3 T. In the first part of the paper, simulations
and phantom measurements showing the characteristics of
the citrate metabolite resonance for 2D J-resolved single-
voxel acquisitions were illustrated, which showed the
strong dependency with echo time due to its strong cou-
pling. In the second part spiral readout gradients were
applied to the 2D J-resolved PRESS sequence to obtain
additional spatial distribution information. The efficiency
of the spiral k-space trajectory makes it possible to cover
the whole k-space within a reasonable scan time.

For a truly feasible clinical protocol to be implemented,
several prerequisites need to be established, however. It is
important for a good spatial suppression pulse to be used
so that there are no aliasing or ringing artifacts. This prob-
lem has been demonstrated from the in vivo exam where
lipid sidebands interfered with the detection of metabo-
lites. This result is in comparison with the phantom re-
sults where good lipid suppression was accomplished. For
the phantom experiment, a head coil with a relatively
homogeneous RF profile and low power was used,
whereas this was not the case for the in vivo exam, which
used the body coil for excitation. Another important pre-
requisite is the main field homogeneity. The presence of
air inside the endorectal coil or near the prostate region
can degrade the homogeneity, leading to line broadening
and potential overlap of the choline and creatine metabo-
lites as seen in the in vivo example.

In this study, we addressed the issue of strong coupling
citrate peak using a 2D J-resolved spectroscopic acquisi-
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FIG. 4. Results obtained from a
patient diagnosed with prostate
cancer with a Gleason score 3 +
3 using spiral-based 2D J-re-
solved MRSI. (a) T,-weighted im-
age with a grid representing the
displayed voxels. (b) Recon-
structed spectra corresponding
to the J(0) Hz lines. The existence
of choline and creatine metabo-
lites can be seen near the middle
region of the displayed voxels. (c)
Spectra corresponding to J(8) Hz 40 2 5
line from F1 domain. Several vox- 2 / \ o i
els show a peak near the 2.5-ppm . L ot oo 1 i
region at the upper left region,
which corresponds to citrate. N, W%WW W{ )
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FIG. 5. Results obtained from a
patient diagnosed with adeno-
carinoma of the prostate with a
Gleason score 3 + 4 using spiral-
based 2D J-resolved MRSI. (a)
T,-weighted image with a grid
representing the displayed vox-
els. (b) Reconstructed spectra
corresponding to the J(0) Hz lines.
The coexistence of choline, crea-
tine, and polyamine metabolites
can be seen. (c) Spectra corre-
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tion sequence. This can be dealt with in a different way as
recently shown using a J-refocused sequence (19). One of
the advantages of using the 2D J-resolved method includes
the potential to detect changes in the citrate coupling
constant, which can be used as another marker for PCa.
This coupling constant is believed to be related to the zinc
concentration, which is directly related to presence of PCa
(20). In addition, any information obtained from the sec-
ond spectral dimension, for example, from the polyamines
as seen, can add to the physiologic information of the
prostate tissue (9). On the negative side, a J-refocused
scheme would require many fewer acquisitions and can
achieve better SNR due to a shortened TE.

CONCLUSION

Single-voxel and multivoxel 2D J-resolved spectroscopy
methods have been demonstrated for in vivo prostate at
field strength of 3 T. Using the 2D J-resolved method,
strong coupling of citrate can be well resolved. For mul-
tivoxel 2D J-resolved spectroscopic imaging, spiral-based
readout sequences are used, which enable data acquisition
within a reasonable scan time.
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Towards biologically conformal radiation therapy (BCRT): Selective IMRT
dose escalation under the guidance of spatial biology distribution
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It is well known that the spatial biology distributide.g., clonogen density, radiosensitivity, tumor
proliferation rate, functional importance most tumors and sensitive structures is heterogeneous.
Recent progress in biological imaging is making the mapping of this distribution increasingly
possible. The purpose of this work is to establish a theoretical framework to quantitatively incor-
porate the spatial biology data into intensity modulated radiation thei&%T) inverse planning.

In order to implement this, we first derive a general formula for determining the desired dose to
each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model.
The desired target dose distribution is then used as the prescription for inverse planning. An
objective function with the voxel-dependent prescription is constructed with incorporation of the
nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also
considered phenomenologically when constructing the objective function. Two cases with different
hypothetical biology distributions are used to illustrate the new inverse planning formalism. For
comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost
are also planned. The biological indices, tumor control probakilit®P) and normal tissue com-
plication probability(NTCP), are calculated for both types of plans and the superiority of the
proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations
revealed that it is technically feasible to produce deliberately nonuniform dose distributions with
consideration of biological information. Compared with the conventional dose escalation schemes,
the new technique is capable of generating biologically conformal IMRT plans that significantly
improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically con-
formal radiation therapyBCRT) incorporates patient-specific biological information and provides
an outstanding opportunity for us to truly individualize radiation treatment. The proposed formal-
ism lays a technical foundation for BCRT and allows us to maximally exploit the technical capacity
of IMRT to more intelligently escalate the radiation dose.2805 American Association of Physi-
cists in Medicine[DOI: 10.1118/1.1924312

Key words: inverse planning, biological model, TCP, NTCP, IMRT

I. INTRODUCTION To establish the BCRT treatment planning scheme, three
d major aspects must be addresség:Determination of the

clinically to provide a highly conformal radiation dose to the distribution of biological properties of the tumor and critical

target volume while reducing the doses to the surroundin?tru_‘:t”res?(”) Pre_scriptiop__of the desired (_jose distribution
sensitive structures™ The current IMRT inverse planning 10F inverse planning; andiii) Inverse planning to generate

is typically aimed at producing a homogeneous target dosB0St faithfully the prescr!beo! non.unlfc'>rm c'iose distribution.
under the assumption of uniform biology within the targetRecently spurred efforts in biological imaging, such as pos-
volume. In reality, it is known that the spatial biology distri- itron emission tomographyPET), single photon emission
butions in most tumors and normal tissues are rarely homg=omputed tomographySPECT, and magnetic resonance
geneous. To maximize the efficacy of IMRT, it is desirable toSpectroscopy imagingMRSI), are aimed at providing solu-
take the inhomogeneous biological information into accountions to the first problerfi.** To give a few examples, the
and to produce customized nonuniform dose distributions olonogen density in malignant glioma can be obtained based
a patient specific basis. This type of radiation treatment i®n the choline/creatine ratio through MRSK tumor hy-
referred to as biologically conformal radiotherapy poxia can be quantified using PET imaging with fluorinated
(BCRT).™° The simultaneous integrated bod@IB) to  misonidazole(FMISO),%"® tumor proliferation rate can be
elective volumes recently appearing in the literatité?®  obtained based on the voxel activity level in DNA prolifera-
represents a simple example of BCRT. However, an underlytion imaging(e.g., fluoro-L-thymidine PET*>***and lung

ing deficiency of the current SIB approach is that the boosfunctional importance distributions can be obtained by per-
doses are based on previous experience, not patient-specifigsion imaging® While the development of molecular imag-
biological information characterizing the spatial tumor bur-ing techniques is critically important in mapping out biology
den distribution. distributions, the successful integration of this information

Intensity modulated radiation therap§vRT) has been use
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into IMRT planning through step@i) and (iii) is also indis-  restrict the integral dose to the tumor volume to a constant.
pensable to fully exploit the obtained biology information to Mathematically, the constraint is written as

improve patient care. In this study we focus our efforts on

the last two problems, with the optimistic assumption that > mD;=E,, (4)
spatial biology distributions within a patient have already

been determined from biological imaging or other means.

Our goal is to establish a theoretical framework for quanti-wheremy is the mass of voxal, andE; is the integral target
tatively incorporating the biological data into IMRT inverse dose.

optimization, and to show the advantage of the selective dose With the above formulation, the task becomes the maxi-
escalation scheme in enhancing tumor control probabilitynization of the TCP under the constraid). The Lagrange
(TCP) and reducing the normal tissue complication probabil-multiplier method is employed to solve the problem. In this
ity (NTCP). In conjunction with the rapid development of approach, a function

molecular imaging techniques, this study lays a technical

foundation for BCRT and provides a basis for clinically re- L(TCP TCR,...)=[ITCR+\[S mD,-E,, (5
alizing the new treatment strategy in the future. Lo P AT ' -

Il. METHODS AND MATERIALS is introduced, where\x is the Lagrange multiplier, and the

A. Biological characterization and nonuniform target solution is obtained by solving the equations

dose prescription

dL
We assume that biological properties influencing radiation TTcP =0. (6)
treatment are characterized phenomenologically by three ra- :

diobiology parameters: clonogen dendity, radiosensitivity .
(a), and proliferation ratdy). Generally, these parameters When mass and volume are equal for all voxels in the target,

are voxel dependent. In this work we concentrate on theiﬁi(';‘gv\f‘epégfaeiizg"g“laerntgr;b% rrtrr?lTli ?oorﬁ:j(;z(rarrt\?ri rf\p?r?en_de-
spatial variation within tumor, and ignore the time depen-_."" 9 9

dence of the last two parameters. sired doseDg(l), at the voxel

To accomplish BCRT, an important step is to derive the , 1 1 ,
desired dose distribution that maximizes the cell killing Dg(i)=a—",3fDref——,(yref—yi)AT——,|n<M), (7)
based or(p, «, y) metrics. In the case of uniform biology, it ot a a o pi
is well known that the target dose should be uniformly dis-
tributed. It is, however, not clear at all what form of dosewhereD, is the reference dose for the voxel with reference
distribution should be used to maximize the cell killing for radiobiological parameter§p,e, e, Vrer)- IN general, Dy
an arbitrary biology distribution. We start from a linear qua- should be set to a value that yields a clinically sensible TCP
dratic (LQ) modef*~3 with inclusion of the tumor cell pro- at the reference voxel. For a given disease site, the radiation
liferation. According to this model, the tumor clonogen sur-dose used in current clinical practice with “intent to cure”
vival § in a voxel of volumeV; after an irradiating dosB; is ~ can be used as a good starting point in selecting the value of
given by Dret. Using Eq.(7), it is straightforward to determine the

_ ) desired target prescription dose once the radiobiological pa-

S = pViexp= aiDi + %AT), @) rameter(p, «, y) metrics andD,.; are known. Note that the
where of =e;[1+d/(a;/ B;)], p; is the initial clonogen den- desired dose distribution represents an ideal situation without
sity, d; is the fractional dosew; and B; are the linear- considering the specific dosimetric tolerances of the sensitive
quadratic coefficients of the cell survival curvg=In2/T,  structures. In reality, this dose distribution may or may not be
is the cell proliferation rateT, is the potential cell doubling exactly realizable. Nevertheless, it sets a landmark and
time, andAT is the overall treatment time. The TCP of a serves as the prescription dose in inverse planning to guide
voxeli can be expressed as the dose optimization process.

, The fractional dosdd;, is required to obtain the parameter

TCR = exr= piV; exp(= a/Di + yAT)]. (2) @ in Eq. (7). On the otlher ha?ldji is not known unptiIDg(i)

The TCP for the whole tumor is the product of the TOP is known. We use a simple iterative method to solve the

all voxels within the tumor volume, i.e., dilemma. First, the fractional dose is initially set th
=D,/ N;, N; being the fractional number. Secord(i) is
TCP=HTCP,. () calculated using Eq(7) and d;=D/(i)/N; is updated. The
I

new Dg(i) is then obtained using the updat&dWe find that
For a given set ofp, «, v}, the task is to find the dose dis- Dg(i) converges to the solution in less than five iterations. In
tribution that maximizes the TCP. Because of the limitationthis study we set/ 3=10 Gy for all target voxels. The for-
of normal tissue dose tolerances, an arbitrarily high dose tanalism proposed here is, however, general and can be ex-
the tumor cannot be achieved and certain constraints need tended to deal with nonuniform distributions of the g
be imposed®*!In line with previous researchef®>“°we ratio.
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B. Inverse planning with spatially nonuniform dose TasLe |. Dose-volume parameters of various sensitive structures used for
prescription calculating NTCP in this study.
The next logical step after obtaining the calculated pre- Sensitive structures n m Dso5 (GY)

scription dose is to use inverse planning to derive the optimal

) ) . T Bladder 0.50 0.11 80
beam profiles that will produce the prescribed dose distribu- Rectum 042 0.15 80
tion. To proceed, we construct an objective function to take Femoral head 0.25 012 65

the known biological information into account. In addition to
the voxel-specific prescription as determined by &, the
nonlinear dose responses of tumor and normal structures are ) ] ) ]
considered using the concept of equivalent volfi€of a  Played at the end of each iterative step to visually monitor

voxel, which is defined as the optimization process.
(AVeq)i = Vi(i)(D(i)/D)*™, (8 D. Plan review tools
where (AVey); is the effective volume for voxel with vol- It is desirable to extend the currently used plan review

ume V; and doseD(i), D is the desired dose for a target tools to deal with a biologically heterogeneous system. For a
voxel or the TDy5 of the corresponding organ, awidi) isthe  target, we define the effective dose at a voxel as the physical
functional unit denSity. The value ofcharacterizes the dose- dose normalized by the desired dose determined bx‘ﬂq
volume effect of an organ and reflects its architectigerial  The effective-dose volume histogra®DVH), which is ob-

or paralle) of the sensitive structure. It is obtained by fitting tzined by replacing the dose with the effective dose in con-
to clinical dose-volume data. For a sensitive structars,a  yentional DVH, is a useful tool for assessing BCRT plans.
positive number(n>0) while for a targetn should be as- For a sensitive structure we replace the fractional volume by
signed with a small negative valgel<n<0). ¢(i)=1for 4\, to construct a functional dose volume histogram

a target voxel. (FDVH), similar to that proposed by Let al>? and Markset
A general form of the inverse planning objective function g1 3 After including the heterogeneous biological informa-
in the voxel domain is written as tion into the EDVH or FDVH, the wisdom used in interpret-
t, N, ing a conventional DVH can be applied to assess the BCRT
F=2r,—> {1+[Di)/DJ(i)]"}[Dg(i) - DI(i)]? plans. In addition to the effective dose and the EDVH or
=1 Dri=l FDVH, a cluster of DVHSs, each corresponding to a given set
Sy N, of biological parametergp,«,y}, is also useful to assess
+ > rUiE {1+ ¢, ()[D(i)/TD, 5/5"}D(i)?, dosimetric behavior of the system as a function of the bio-
o=1 Ngi=1 logical status of the system.
9) Besides the dosimetric evaluation tools, we also used the

TCP and NTCPs for plan evaluation. In calculating TCP and
wherer . andr, are the structure specific importance factorsNTCP, the heterogeneous biology distributions need to be
of targetr and sensitive structure, respectivelyt. ands,  taken into account. TCP is calculated using E@%.and (3)
the number of targets and sensitive structulesandN,, the  and NTCP is assessed using Lyman’s model. The Kutcher—
total number of voxels of targetor sensitive structure, n,  Burman effective-volume DVH reduction methéds ex-
andn, the n parameter of target and sensitive structure,  tended to include the nonuniform functional unit density dis-
D¢(i) the calculated dose in voxé] D{(i) the prescription  tribution using Eq(8) when transforming a nonuniform dose
dose in a target voxel given by Eq.(7), and TD, 55 the  distribution into a uniform irradiation of an effective partial
TDs5 of sensitive structurer. The objective function be- yolume. Model parameters from Burmanal > are listed in
comes the conventional quadratic objective function if theTaple | for the NTCP calculation.
term in the bracket inside each summation is set to u(titg
is true when the dose-volume effect is negligible, i.e., where, Case studies
n,=n¢=+). More detailed information about the optimiza-

tion algorithm can be found in Ref. 49. A prostate case with two different hypothetical distribu-

tions of radiobiological parameters is used to test the pro-
posed BCRT inverse planning scheme. In each study, the
target consists of the prostate gland with a few intraprostatic
A software module for optimizing the objective function lesions. The sensitive structures include the rectum, bladder,
(9) is implemented in the platform of theLuNc treatment and femoral heads. Figuregaland 3a) show the geometric
planning systeniUniversity of North Carolina, Chapel Hill, shapes and locations of the structures in the two examples.
NC). The dose calculation engine and a variety of image/ In the first example the target includes four biologically
beam/plan display and evaluation toolsrafuNC are used to  different regions, and the functional unit density distributions
review and compare the optimization results. The ray-by-rayn the sensitive structures are uniform. Region 1 represents
iterative algorithm(SIITP) reported earlief > is employed the basis reference target volume with typical paramétets
to obtain the optimal beam intensity profiles. The dosepy,=5x10° clonogen/crd,  ;=0.26 Gy!, and v,
volume histogramgDVHSs) of the involved organs are dis- =In 2/40 day®. The radiobiological parameters of the intra-

C. Implementation

Medical Physics, Vol. 32, No. 6, June 2005



1476 Y. Yang and L. Xing: IMRT dose escalation 1476

TasLE . Radiological parameters for the target regions in the two ex-form dose within a target volume, we have used an
amples. “extreme” combination ofp,a,y}, which leads to an ex-

Targets poi (Clonogenicd)  o; (GyY) v (day™d) ceedingly high prescription dose in regionBL9 Gy. Fig-
: ures 1b)-1(d) show the isodose distributions of plan 1 in a
Example 1 Region 2 510° 0.26 In2/40 transverse slice and two sagittal slices. The EDVH of the
Region 3 5 10° 0.13 In 2740 target and the DVHs of the sensitive structures are plotted in
Region 4 5% 10° 0.26 In2/10

Example 2 Region 2 %10 0.20 n2/10 Fig. 2 .for plan 1 in solid curves. For comparison, the corre-
Region 3 5¢10° 010 In2/60 spondm.g EDVH.s and DVHs of plan 2, -3, -4, and -5 are also
shown in the figures as dashed, dotted, dash-dotted, and
dash-dot-dotted curves, respectively. As seen from Fig. 1, all
) ) . ) regions in the prostate are well covered by their prescription
prostatic lesions are listed in Table Il. The paramet®fs (oses and the sensitive structures are well spared. Even in
characterizing the dose-volume effect of the sensitive struc;s extreme case, it seems that the inverse planning system
tures in the objective functiof®) can be found in Table I.  can satisfy the biological requirement. A steep dose gradient
The parameten, is chosen to be —0.2. For comparison, five s found at the interface between the target and the rectum. A
IMRT plans, indexed by plan 1, -2, -3, -4, and -5, are generyomparison of the target EDVH in Fig(@ indicates that
ated. Plan 1 is obtained using the BCRT optimization schemg,qe 98.5% of the target voxels achieved their desired

described above witDer=70 Gy. Plan 2 is obtained by pre- ,q6 in plan 1 and plan 5. However, for the uniform dose

scribing the _whole target & uniform dose of 70 Gy. Plan 3o5calation scheme, the desired doses in some regiegisn
and -4 are similar to plan 2 except that the dose is escalat

efl, 3 and part of region 4 in plan 2; region 2 and 3 in plan 3;
to 81 and 91 Gy*'*respectively. Plan 5 is the SIB IMRT P 9 P 9 p

| th th ibed d hat of the BCRT Iand region 3 in plan ¥are not achieved. We found that, in
plan with the same prescribed doses as that of the BCRT. Blan 1, the doses to the surrounding sensitive structures are
plan 1 to -4, the objective function expressed in E®). is

used and in plan 5 the conventional dose-based uadratlnOt significantly increased compared with those of plan 2,
S plan ST q oFespite the fact that some voxels in region 4 receive a dose as
objective function is adopted. The optimization parameter

(maximum dose constraints and importance fagtarsthe %lgh as 119 Gy. In plan 1, the rectum, bladder, and femoral

dose-based method were adjusted by trial and error to obtaﬁeads are better qured in comparison with plan 3 ar.]d. 4
T ) - owever, by comparing the DVHs of plan 1 and -5, it is
the “optimal” plan. The same beam configuratidfive

. oticed that, although the target coverage in plan 5 is similar
equally spaced 15 MV photon beams with gantry angles o . . . .
0°, 72°, 144°, 216°, and 288° in IEC conventida used in o thﬁth!”hp'ag L thfh Sensl'“"el S.t”é?t”tr.es 'tr;] ptl?f? 5 receive g
generating the five plans. much higher doses than plan 1, indicating that the propose

In the second example we hypothetically introduced aapproach can improve the sensitive structure sparing com-

higher functional unit density region in the rectyiR region pared with the conventional dose-based quadratic objective
2 as shown in Fig. @] in addition to three biol_ogically function. In addition, as can be expected, the target doses in
different target regions. The functional unit density of thePlan 1 and -5 are less uniform in the target volume in com-
R region 1 is assigned a value of 1 and that of theegion ~ Partson with that of plan 2, -3, and -4. This is more pro-
2 is set to be 4. The same s@ly,a;,y) as the previous nounced in the target region 1, where about 50% of the vol-
example and a reference dose of 70 Gy are assigned to thEN€ receives a dose larger than 85 Gy aSO ShOWOn in Fixy, 2
prostate gland. The parameters for other target regions af§Sulting in an effective dose above 120%-#50% of the
listed in Table II. Once again, five IMRT plans are generated!arget V0X9|S_[S?e Fig. ). However, the increase of dose
Plan 1 is obtained using the proposed selective dose escalghomogeneity is desirable here provided that the NTCPs are
tion scheme, plan 2, -3, and -4 are generated using differeftot comprormsed.

uniform prescription dose0, 81, and 91 Gyand plan 5 is Table Il lists the calculated TCPs for the targets and
SIB plan with the same prescription as plan 1 but is Op«[i_NTCPs for the sensitive structures with consideration of het-
mized using the conventional quadratic objective function. Irfrogeneous biology in all plans. It is seen that the overall
generating these five plans, seven equally spaced 15 MYCPs for the three plans with uniform target dose prescrip-
photon beam#0°, 51°, 103°, 154°, 206°, 257°, and 30%te tions (plan 2, -3, and -fare all less than that of the BCRT

employed. plan (plan 1) and SIB plan(plan 5. This is understandable
because, in plan 2, -3 and -4, some target regisnsh as
Il. RESULTS target region Breceive doses much less than the desired

doses. For example, in plan 4, the TCP for target region 3 is
only 0.461. Even if the TCPs for region 1, 2, and 4 are all
close to 1.00, the resultant total TCP for plan 4 is 0.461. In
In the first example, based on EJ) and the parameters contrast, the TCPs of plan 1 and plan 5 are 0.984 and 0.981,
listed in Table II, the prescription doses to the target region 2respectively. Furthermore, we found that the NTCPs of the
3, and 4 are determined to be 85, 119, and 75 Gy, respesensitive structures in plan 1 are very close to plan 2, signifi-
tively. In order to examine the capability of the BCRT in- cantly less than plan 3, -4, and -5. For example, the rectum
verse planning system in producing an extremely nonuniNTCPs are 0.21% for plan 1 and 0.20% for plan 2. These are

A. Example 1: Prostate case with four biologically
different regions

Medical Physics, Vol. 32, No. 6, June 2005
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Femoral Head(R)

SN

/ Region 2

Rectum
Fic. 1. A hypothetical prostate case
with four biologically different regions
(example 1. (a) Geometric shapes and
(a) (b) Sagittal 1 locations of the targets and sensitive
structures; (b)—(d): Isodose distribu-
tions in an axial slice and two sagittal
slices for plan 1, generated by opti-
mizing the objective function with a
nonuniform dose prescription derived
from Eq. (7).

(c) Axial (d) Sagittal 2

increased to 0.65%, 1.84%, and 0.89% for Plan 3, -4, and -Sters listed in Table Il. Figures(l®-3(f) show the isodose
respectively. Again, although similar overall TCPs aredistributions of plan 1 in three transverse slices and two sag-
achieved for the BCRT and dose-based SIB IMRT plansttal slices. The EDVHs and DVHs of the target and sensitive
when the same dose prescriptions are used, the rectustructures for plan 1 to plan 5 are plotted in Fig. 4 as solid,
NTCPs are significantly reduced using the proposed forgashed, dotted, dash-dotted, and dash-dot-dotted curves, re-
mulism. This is consistent with our previous study of thespectively. Similar to the previous example, in plan 1, all
_objective function in the context of conventional IMRT aim- regions in the prostate are well covered by a dose compa-
ing to deliver a uniform dose to the target voluffe. rable to the prescription and the sensitive structures are well
spared. The dose gradient at the interface between the target

B. Example 2: Prostate case with three biologically and the rectum is very sharp for all the plans. From Fig) 4
different regions and nonuniform importance we find that above 98% of the target voxels achieved their
In rectum desired doses in plan 1. As a consequence of incorporating

In the second hypothetical example, there are three pidunctional unit density information in inverse planning, the
logically different regions in the prostate and two function-rectum sparing is even better than that of plan 2, much better
ally different regions in the rectum. The prescription doseghan that of plan 3, -4. However, we notice that the sparing of
for the three target regions are {i@ference doge 99, and the femoral heads in plan 1 is not as good as that in plan 2,
121 Gy, as determined by E(}) with the biological param- -3, and -4. This is because high-intensity beamlets that pass

Medical Physics, Vol. 32, No. 6, June 2005
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Fic. 2. Comparison of EDVHs and DVHs of the BCRT plgsian 1), three uniform IMRT plangplan 2: 70 Gy, plan 3: 81 Gy, and plan 4: 91 &nd the
SIB plan(plan 5 in example 1(a) Target EDVHs for the five planénsert is the regular DVHs of the prostate tajg&he normalized doses to the target
region 1, 2, 3 and 4 are 70, 85, 119, and 75 Gy, respectiylly(e) DVHs of different target regions and sensitive structures for the five plans. The solid,

dashed, dotted, dash-dotted, and dash-dot-dotted curves represent the results of plan 1, 2, 3, 4, and 5, respectively. The effective dosétie géfisedlas
dose at a voxel normalized by its desired dose determined by7Eq.

through the femoral heads are needed to adequately irradiate Table IV lists the calculated TCPs and NTCPs for all

the target region 3, as seen from Figgb)3and 3c). In plans. Once again, we found that the TCP of the target in the
addition, similar to the first example, the target coverage irproposed BCRT technique is much higher and the NTCP of
plan 5 is close to that in plan 1, but the doses to the sensitivihe rectum is lower compared with those obtained using the
structures in plan 5 are much higher than that in plan 1.  conventional uniform dose escalation schemes. Remarkably,
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TasLE Ill. Comparison of TCP and NTCP for the five IMRT plans for example 1.

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5

(BCRT plan (70 Gy Uniform) (81 Gy Uniform (91 Gy Uniform) (SIB plan

TCP Region 1 0.997 0.995 1.000 1.000 0.994

Region 2 0.998 0.642 0.995 1.000 0.999

Region 3 0.989 0.000 0.002 0.461 0.989

Region 4 1.000 0.997 1.000 1.000 0.998

Overall 0.984 0.000 0.002 0.461 0.981

NTCP Rectum 0.212 0.196 0.652 1.84 0.885
(%) Bladder 1.6x10°° 1.4x 105 2.3x10° 4.2x10° 3.6x10°
Femoral headR) 2.0x10°® 2.1x10°6 2.6x 10 1.75x 104 3.9x10°
Femoral headL) 1.2x10° 2.0x10°° 7.0x 10 5.26x 104 6.9%107°

the overall TCP for the target is increased from 0.823 tosituation, the desired dose is only about 7 Gy higher than the
0.982 and the NTCP of the rectum is reduced from 3.1% taeference value. A detailed discussion of this special situation
0.40% when plan 4 is replaced by the selective dose escalaas been presented by Webb and Nartim.

tion schemgplan 1). Again, we found that, for similar over- Another special case is that the tumor clonogen density
all TCPs, the rectum NTCPs of the BCRT plan are muchand the proliferation rate are constant and the radiosensitivity
lower in comparison with that obtained using dose-based is spatially nonuniform. Equatiof¥) now becomes

!
1 1

SIB scheme. o 1 o
DY) = Dy - = |n(—',ef>. (11)
IV. DISCUSSION i
Equation(7) provides a general formula for determining The desired dose is approximately inversely proportional to

the desired target dose distribution based on the known biokhe parameter; and is thus sensitively dependent on the
ogy information of the system, and represents one of thaalue of parametes. This is similar to the conclusions of
main results of this study. A few special cases are wortfEbert and Hobal! and Levin-Plotnik and Hamiltoff: For

discussing here. First, when the biology distribution is uni-example, ifa; is reduced from 0.312corresponding tax
=0.26, fractional dos€,=2.0 Gy, anda/ ratio=10 Gy to

form in the target, a uniform dose @f; is desired. This is
consistent with previous studiésand existing clinical 0.18 (corresponding toa=0.15, d;=2.0 Gy, and «/p
knowledge. =10 Gy), the desired dose is increased by about 718%m
When the clonogen density is nonuniform while the 70 Gy to about 118 Gy
values ofa and y are constant across the target, we have If we keep the tumor clonogen density and radiosensitiv-
ity o’ constant and only allow the proliferation rage¢o vary
D(i) = Dyoy— — In( P! spatially, then
0(i) =Drer=—In : (10)  spatially,
a Poi
which is identical to the formula obtained by Webb and Dg(i):Dref’f;(%— YredAT.

Nahum?® Equation(10) indicates that the desired dose de- !
pends on the tumor cell density logarithmically and is thusThus, the desired dose increases linearly with the prolifera-

relatively insensitive to a variation in the clonogen density.tion rate. In this work the potential cell-doubling times,,
For o,¢=0.312, for example, even if the clonogen density inused by Kinget al>* are adopted. Sinc&, for a prostate
a tumor voxel is 10 times higher than that of the referencdéumor is relatively longer, its influence on the desired dose is

(12)

TasLE IV. Comparison of TCP and NTCP for the five IMRT plans for example 2.

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
(BCRT plan (70 Gy Uniform (81 Gy Uniform) (91 Gy Uniform) (SIB Plan
TCP Region 1 0.997 0.995 1.000 1.000 0.968
Region 2 0.989 0.000 0.587 0.981 0.987
Region 3 0.996 0.006 0.408 0.839 0.990
Overall 0.981 0.000 0.239 0.823 0.946
NTCP Rectum 0.397 0.414 1.46 3.12 1.25
(%) Bladder 1.5 10 1.2x10° 1.8x10°° 4.3x10°5 3.9x10°5
Femoral headR) 3.7x107° 1.5X10°° 1.8x10° 5.3x107° 2.3x10°
Femoral headL) 4.9x107° 1.1x10° 3.0x10° 45x10° 3.6x10°
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R Region 1 R_Region 2

(@) (b) Axial 1

©) Axial 2 (d) Axial 3

(e) Sagittal 1 (] Sagittal 2

Fic. 3. A hypothetical prostate case with three biologically different regions and nonuniform importance in the(ecuple 2. (a) Geometric shapes and
locations of the targets and sensitive structutbs:(d) Isodose distributions in three axial slices and two sagittal slices for plan 1, generated by optimizing
the objective function with nonuniform dose prescription derived from(#yg.

not very significant. However, for other more rapidly prolif- uting factors, one being the local biological parameters
erating tumors, the proliferation rate may play an importantp, «, v}, and the other being the coupling between the frac-
role. In such situations, reducing the overall treatment timeional dose and the total dose. The latter is responsible for the
AT (e.g., using an accelerated scheisehelpful to minimize  phenomenon that the total dose needs to be decreased when
the influence of the proliferation rate. the number of fractions is reduced. If the quadratic term were
We emphasize that the quadratic term in the linearignored, according to Ed7), the dose required at a voxel
guadratic model plays an important role in accounting for thewould be much higher. For example, the desired doses for
fractionation effect. If only the linear term is kept, the total target region 3 in example 1 are determined to be 119 and
doseDg(i) in Eqg. (7) is no longer entangled with the frac- 135 Gy with and without inclusion of the quadratic term,
tional dosed,. When the quadratic term is “switched on,” the respectively.
value ong(i) depends not only on the total reference dose We also would like to emphasize that in this study, the
but also on the fractional dose. For a large fractional dosesadiosensitivitye’ and proliferation ratey are assumed to be
the total dose will be less, and vice versa. In other words, theonstants during the whole treatment course. In reality, both
total dose received by a voxel is determined by two contrib«’ and y may change with time due to such biological pro-
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Fic. 4. Comparison of EDVHs, FDVHSs, and DVHs of the BCRT platan 1), three uniform IMRT plangplan 2: 70 Gy, plan 3: 81 Gy, and plan 4: 91 Gy
and the SIB plariplan 5 in example 2(a) The target EDVHs for the five plar{@sert is the regular DVHs of the prostate tajg&he normalized doses to
the target region 1, 2, and 3 are 70, 99, and 121 Gy, respectiyhe rectum FDVHs for the five plarigsert is the regular DVHs of the rectynic)—(e):
DVHs of different target regions and sensitive structures for the five plans. The solid, dashed, dotted, dash-dotted, and dash-dot-dottecsemveseaep
results of plan 1, 2, 3, 4, and 5, respectively.

cesses as tumor cell redistributt8rand reoxygenation’ Comparing with the uniform dose escalation scheme, our
The time dependence of these factors may result in a redustudy clearly suggests that deliberately incorporating an in-
tion of the desired prescription dose, and this effect shouldhomogeneous dose distribution significantly enhances the
be investigated in the future. TCP and reduces the NTCP. Physically, we believe that the
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significant improvement arises from the more effective useveal detailed patient-specific biology distribution informa-
of radiation in the newly proposed treatment scheme. A greaion, this study may have significant implication for the
deal of dose is “wasted” in the conventional uniform dosemanagement of cancer in the future.

escalation scheme. For example, in the first example the in-

creased doses in the target region 1 and 4 have almost IICKNOWLEDGMENTS

contributions to the enhancement of the TCP when plan 2
(70 Gy uniform dose to the prostate gland replaced by

plan 3 (81 Gy? or pl_an 4(91 G_y). Even thoggh part of the .reading the manuscript. We would also like to thank Dr. S.
prostate receives high doses in the selective dose escalat'?—f};mcock Dr. A. Koong, Dr. C. King, Dr. Q. T. Le, Dr. A

scheme(for example, 119 Gy in target region 3 of the first Boyer, and Dr. D. Spielman for useful discussion. This re-

example, the total deposited energy in the targets is still less . . . .
. e search is supported in part by the National Cancer Institute
than that of plan 3 or -4. It is thus not difficult to understand bp P y

. ) S . (5 RO01 CA98523-00 and Department of Defense
why deliberately nonuniform dose distributions can, in gen'geDAMD17—03—1—0019 and 0023

eral, reduce the radiation side effects and represent a mo
intelligent way to irradiate the tumor target. )
A similar deficiency also exists in the current SIB ap- APPENDIX: DERIVATION OF EQUATION (7)
proach. Although it is clear that the regions with different We present the detailed derivation process for Egun-
tumor burdens should be given different doses, the specifider the condition of equal mass and volume for all target
values for the regions are determined inahhocmanner.  voxels.
The empirical boost dose could be too low, in which case the Substituting Eq(5) into Eq. (6), we obtain
tumor control is sacrificed, or too high, in which case other '
. . 5(mD|) _ 5(mrefDref) _
parts of the system are compromised. The problem is aggra- A\TCPF, TCR )\TCPrefW =-TCP. (A1)
vated when the tumor burden varies continuously from point ‘ ref
to point. In the proposed BCRT approach, the prescribedince #0 otherwise, TCP becomes zero according to the
dose is voxel dependent and is determined based on the ttequirement of Eq(6), which corresponds to a minimum. If
mor biology distribution. In addition, a more sophisticatedwe assumed that mass for all target voxels is equal, then Eq.
objective function is developed to take the dose-volume ef{A1) becomes
fect and functional density information of the sensitive struc-
¢ . 7 . . oD, D e
ures into account, resulting in better sparing of the sensitive TCP——- = TCP ——%-.
structures. JTCR ITCPres
Einglly, i.t should be recognized that our knowlgdge of From Eq.(2) we have
radiobiological parameters for tumors or normal tissues is L L
still very crude and the validity of the model is still under Di=— In{ - yAT+ In{— In TCP,] _ (A3)
establishment. Therefore, the LQ model and the parameters - oiVi

adopted in the paper are fine for a proof of principle but they o _
should not be taken as more than that. Substituting the expressions from BEé3) for both D; and

D,f into Eq. (A2), we have
ai, |I’](TCP|) = ar,ef In(TCPref)- (A4)

V. CONCLUSION The desired dosemg(i), producing maximum TCP with the
constraint of constant integral dose, can be obtained by sub-

The authors wish to thank Dr. B. Thorndyke for carefully

(A2)

In the presence of nonuniform biology distributions, == ™. TCP and TCP. din Eq2) i Ea. (M
IMRT inverse planning is complicated by the fact that it is stituting ran fer expressed in Eq2) into Eq. (A4)
not c[ear wh_at represents the appropriate spatial dqse pre- DY) = %D 1 AT- 1 | A eiPreViet
scription, which is generally used as a landmark to guide the oli) = o e a;(Yref %) o n apV, )
dose optimization process. In this work, we have described a ' ' ! SRR
technique for deriving the prescription dose based on an LQ (AS5)
r_nod_el WI'Fh consideration of the cell prollferatlor]. '_I'he rela-\when volume for all target voxels is equal, E@5) be-
tion is quite general and can be used as prescription dose {@mes Eq(7)
guide an arbitrary inverse planning objective function aimed
to produce customized dose distribution in accordance with?author to whom correspondence should be addressed. Electronic mail:
the spatial biology information. For a given patient, IMRT  lei@reyes.stanford.edu o . _
inverse planning now consists of two steps: Derivation of the S. W(Tbb,lntensmly-ModuIated Radiation Therafynstitute of Physics,
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NARROW BAND DEFORMABLE REGISTRATION OF PROSTATE MAGNETIC
RESONANCE IMAGING, MAGNETIC RESONANCE SPECTROSCOPIC
IMAGING, AND COMPUTED TOMOGRAPHY STUDIES
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Purpose: Endorectal (ER) coil-based magnetic resonance imaging (MRI) and magnetic resonance spectroscopic
imaging (MRSI) is often used to obtain anatomic and metabolic images of the prostate and to accurately identify
and assess the intraprostatic lesions. Recent advancements in high-field (3 Tesla or above) MR techniques affords
significantly enhanced signal-to-noise ratio and makes it possible to obtain high-quality MRI data. In reality, the
use of rigid or inflatable endorectal probes deforms the shape of the prostate gland, and the images so obtained
are not directly usable in radiation therapy planning. The purpose of this work is to apply a narrow band
deformable registration model to faithfully map the acquired information from the ER-based MRI/MRSI onto
treatment planning computed tomography (CT) images.

Methods and Materials: A narrow band registration, which is a hybrid method combining the advantages of
pixel-based and distance-based registration techniques, was used to directly register ER-based MRI/MRSI with
CT. The normalized correlation between the two input images for registration was used as the metric, and the
calculation was restricted to those points contained in the narrow bands around the user-delineated structures.
The narrow band method is inherently efficient because of the use of a priori information of the meaningful
contour data. The registration was performed in two steps. First, the two input images were grossly aligned using
a rigid registration. The detailed mapping was then modeled by free form deformations based on B-spline. The
limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which is known for its superior
performance in dealing with high-dimensionality problems, was implemented to optimize the metric function.
The convergence behavior of the algorithm was studied by self-registering an MR image with 100 randomly
initiated relative positions. To evaluate the performance of the algorithm, an MR image was intentionally
distorted, and an attempt was then made to register the distorted image with the original one. The ability of the
algorithm to recover the original image was assessed using a checkerboard graph. The mapping of ER-based
MRI onto treatment planning CT images was carried out for two clinical cases, and the performance of the
registration was evaluated.

Results: A narrow band deformable image registration algorithm has been implemented for direct registration
of ER-based prostate MRI/MRSI and CT studies. The convergence of the algorithm was confirmed by starting
the registration experiment from more than 100 different initial conditions. It was shown that the technique can
restore an MR image from intentionally introduced deformations with an accuracy of approximately 2 mm.
Application of the technique to two clinical prostate MRI/CT registrations indicated that it is capable of
producing clinically sensible mapping. The whole registration procedure for a complete three-dimensional study
(containing 256 X 256 X 64 voxels) took less than 15 min on a standard personal computer, and the convergence
was usually achieved in fewer than 100 iterations.

Conclusions: A deformable image registration procedure suitable for mapping ER-based MRI data onto
planning CT images was presented. Both hypothetical tests and patient studies have indicated that the registra-
tion is reliable and provides a valuable tool to integrate the ER-based MRI/MRSI information to guide prostate
radiation therapy treatment. © 2005 Elsevier Inc.
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INTRODUCTION

Endorectal (ER) coil-based magnetic resonance imaging
(MRI) and magnetic resonance spectroscopic imaging
(MRSI) provide high-resolution anatomic and metabolic
information and allow us to better assess the extent of
prostate cancer and the involvement of seminal vesicles
(1-12). The new imaging information can also be used to
guide the dose optimization process to selectively boost the
high tumor burden regions (13—16). To use the imaging data
for treatment planning, an indispensable step is the regis-
tration of ER-based MRI/MRSI and the treatment planning
CT images. Presently, manual and/or automated image fu-
sion tools implemented in most commercial treatment plan-
ning systems are based on geometric translations and rota-
tions of the images and are generally not suitable for
handling the problem because the endorectal coil displaces
and distorts the prostate and surrounding tissue (17). A
deformable registration procedure must be applied to map
the ER-based MRI/MRSI data onto the planning CT images
acquired in a normal treatment position without the inser-
tion of ER probe (18, 19).

There have been several relevant image registration tech-
niques reported in the literature. Zaider et al. (13) and Court
and Dong (20) used a rigid transformation for the correction
of tissue displacement. A deformable procedure based on
the finite element model (FEM), in which images are de-
scribed as blocks of elastic materials on which forces apply,
was proposed by Bharath et al. (21). In this approach, the
parameters that control the behavior of the elastic material
and are responsible for the conversion of forces into local
deformations of the elastic material are Young’s elastic
modulus and Poisson’s ratio. Although powerful, the model
has the drawback that values of the elasticity and density
constant for various tissues are not readily available and
have to be found by a trial and error procedure. The method
also relies on using complicated software to generate a FEM
mesh and masks of the involved structures. Recently, a
simpler technique based on spline interpolation was pro-
posed (18). When the first and second derivatives of the cost
function can be analytically deduced, this approach reduces
the problem to solving a set of system equations (22). Wu et
al. (23) used a free-form intramodality registration between
the MRI images obtained with and without inflatable ER
probe acquired at the end of the study. Their study sug-
gested that the free-form registration is stable and accurate
for dealing with the problem. However, the approach is
valid only for intramodality registration and entails extra
MRI scans of the pelvic region with body coil. In addition,
a term was introduced in their cost function to constrain the
optimization to smooth deformations, posing a new problem
of how to objectively select the relative weightings of
different terms in the cost function.

An improvement to this method can be achieved by using
a spline model with the smoothness of the deformation field
assured by the interpolation between a grid of fixed control
points. In this setup, the cost function is composed of a
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single term and no weighting factors are required. A simple
method along this line is to deduce the spline coefficients
from a set of user-defined control points, as was done by Fei
et al. (18) in a study of warping and rigid registration of MR
volumes. This method was also applied to directly register
prostate CT and MRI/MRSI and validated by using a series
of phantom measurements (24, 25). Coselmon et al. (26)
used a similar technique to study the accuracy of mutual-
information—based CT registration of the lung at exhale and
inhale respiratory states.

In general, image registration can be formulated as an
optimization problem where the variables are a group of
transformation parameters that lead to the best match be-
tween the input images. The match is quantified in mathe-
matical terms by the use of a metric, which ranks a potential
matching based on the image histograms, resolution, or
pixel values of the involved organs. There is a vast literature
on using image intensity information such as mean squares,
normalized correlation, and mutual information (27) to con-
struct metrics for guiding the registration process. The mu-
tual information represents a popular choice when dealing
with multimodality image registration. Briefly, mutual in-
formation is a criterion from information theory and is
related to entropy, which is a measure of uncertainty, vari-
ability, and complexity. When each of the two images
provides the most information about the other, the mutual
information metric is maximal and the two images are
considered to be coregistered. Methods using signed dis-
tance information from edge features have also been re-
ported (28), in which the signed distance field of an object
surface is used as the shape representation. The signed
distance field is a continuous scalar function defined
throughout the volume, and its value is simply the distance
to the nearest point on the primary surface, with opposite
signs on opposite sides of the surface. The central idea is
that if the data shapes are registered correctly, the signed
distance fields should match in the common coordinate
system.

To register the prostate MRI/MRSI with CT images,
theoretically, all we need to do is to use an optimization
algorithm to minimize an mutual information metric or
alike. Such setups have been applied before on the problem
of CT-positron emission tomography (PET) registration
(29), with splines modeling the deformations and a limited
memory quasi-Newton (L-BFGS) algorithm (30) optimizing
the system. In reality, the mutual information metric is
noisy, and a deterministic optimization algorithm is gener-
ally not suitable to find the global solution. More powerful
algorithms capable of statistically escaping from local min-
ima, such as simulated annealing or genetic algorithms, are
often used to attack the problem. Even with these powerful
stochastic algorithms, finding the true solution of the prob-
lem can still be challenging because of the wide variety of
possible pixel intensities within an organ. A narrow band
formalism was devised to improve the convergence the
calculation. A narrow band is composed of all points within
two isosurfaces defined by the signed distance values
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of *d. The method is a hybrid of the techniques based on
image intensity distributions and the signed distance infor-
mation (28). In essence, the technique is a two-step image
registration (31) in which an organ is first represented by a
data structure containing the signed distance values from
objects, followed by an image registration using a pixel-
based metric. A signed distance field of an object is repre-
sented through the narrow band, since the concept prevents
self-intersection problems and seamlessly handles changes
in topology. Previous studies have suggested that the tech-
nique improves the convergence behavior of the calculation
and reduces the computational efforts (31), because sophis-
ticated statistical considerations can be replaced with sim-
pler pixel-based metrics computed only in the regions of
clinical interest.

In this work we apply the narrow band deformable reg-
istration model to map the ER-based MRI/MRSI data onto
CT images and report our implementation of the algorithm.
In particular, we present our experience with the selection of
model parameters, optimization algorithm, and the valida-
tion of the technique. The general reference drawn from this
study is that the narrow band technique is robust and accu-
rate for mapping information between different types of
images. The approach is quite general and, with minor
modifications, it should be applicable to many other de-
formable image registration problems in radiation therapy.

METHODS AND MATERIALS
Software platform

All calculations are implemented using an open-source software
toolkit named the Insight Toolkit (ITK) (32), which consists of
template-based codes for a large number of image visualization,
segmentation, and registration classes. The programs contained in
ITK are easily extendable, making it an ideal platform for the
development of image registration methods. Concise and clear
descriptions on the use of the available subroutines are provided in
the ITK manual. For convenience, in the following we outline the
methods used in our calculation with attention paid to the issues
specific to radiation therapy image registration and to the imple-
mentation of the methods.

Registration framework
The overall image registration process of ER-based MRI/MRSI
and treatment planning CT images is shown in Fig. 1. The input to

[cr | [me |

+

Segmentation F
_ Rigid ki ﬁgld or deformable registraunn
registration “
Lm
Creation of agc ) fmeget
narrow band
- Deformable | mlzrpn:lz(ur |J Meiric |

registration

Map

Fig. 1. Narrow band-based image registration procedure. A two-
step registration is employed here to successively deal with trans-
lational and deformation miss-matches. (CT = computed tomog-
raphy; MRI = magnetic resonance imaging.)

(c)

Fig. 2. (a) Magnetic resonance image zoomed in the prostate
region, (b) computed tomography image of the pelvic region, and
(c) the narrow band representation of rectum and prostate.
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Fig. 3. Checkerboard visualization of algorithm’s capability to recover from intentionally introduced deformations for
two cases. The test is to register the warped image to the “gold standard” represented by the original form of the
deformed magnetic resonance image. For the first case, the original and intentionally deformed images are shown in (a)
and (b), respectively. The checkerboard images before and after deformable registration are shown in (c) and (d),
respectively. The registration process and the results for the second case are shown in (e) to (h). Figure continues on p. 599.
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(h)
Fig. 3. (Continued)

the registration software is the images to be registered: a fixed
image and a floating image, described by their intensity distribu-
tions /,(x) and 1,(x), respectively. In our problem, the former one
is assigned to be the treatment planning CT image and the later the
ER-based MRI/MRSI. To facilitate the computational process, we
separated the image registration calculation into two steps. A rigid
registration is first performed to grossly align the two images and
the deformable registration then follows.

For convenience, a patient is divided into a grid with N* cells.
The corner of a lattice cell is referred to as a node and is indexed
byi(i =1, 2,...N°. The displacement of a node i is specified by
a vector X,, and the displacement vectors, {X;}, of a collection of
nodes characterize the tissue deformation. The displacement at a
location x on the image is deduced by fitting a polynomial ex-
pressed using the basis spline (BSpline) (33, 34) to the grid nodes
x,. Unlike other spline models, the BSplines are locally controlled.

That is, the displacement of an interpolation point is influenced
only by that of the closest grid points, and changing a lattice node
only affects the transformation regionally, making it efficient in
describing local deformations.

A signed narrow band is defined on the CT image for prostate
and rectum based on the physician-delineated contour. A narrow
band is composed of a number of nodes with known distances to
the contours, which introduces additional positional information in
the representation. Typical narrow bands for rectum and prostate
are shown in Fig. 2c as a gray-level image. Pixel intensities
correspond to the signed distances with dark/white values repre-
senting the negative/positive distances. The zero level set is rep-
resented with a medium gray intensity. The gray background in
this image is not part of the narrow band structure.

The task of standard image registration is to find the transfor-
mation matrix, 7(x), that maps an arbitrary point x on the fixed
image to the corresponding point x’on the floating image (or vice
versa) so that the best possible match, as measured by the regis-
tration metric, is achieved. The choice of the metric for ranking
different possible matching differentiates one algorithm from the
others and is fundamental to the success of the image registration.
In our calculation, each organ in the floating image is represented
by the data structure of the signed distance or by the narrow band
surrounding the edge of the organ. The narrow band acts as a shape
representation model of an anatomic structure. It is the fixed or
target object in the registration process so that the band does not
need to be regenerated for each evaluation of the metric (31). As
shown in Fig. 1, the image registration proceeds in an iterative
fashion. The matrix coefficients of 7(x) are the node displacements
and are adjusted iteratively to minimize the normalized correlation
between the two images defined as:

21 L(X)I,(Tx;)

_ i

A /2 1§<x,-)2| I(Tx))

where i and j are the node indices within the narrow band on the
fixed image, I,(x;) is the intensity of the node at x; on the fixed
image a, and [,(Tx,) is the intensity of the image b at where the
node x; is mapped. The metric uses both voxel intensity and
delineated structures as complementary information for the regis-
tration.

ey

The L-BFGS algorithm for optimization

Optimization of the normalized correlation function with respect
to the displacements of the nodes, {x;}, yields the transformation
coefficients 7(x) that map the points on image a to image b. Since
the two images do not necessarily have the same size, an interpo-
lation may be needed to compute intensity at a mapped point X =
T(x)x. To facilitate the optimization it is preferable that both the
deformable model and the metric are differentiable (29). This
condition is satisfied for the system that we are dealing with, as
demonstrated in a previous mathematical work (35).

We used the limited memory BFGS algorithm L-BFGS (30),
which is known for its superior performance in dealing with
high-dimensionality problems, to optimize the system here. L-
BFGS, as compared with a conventional gradient search method
such as the Newton’s algorithm, does not require the exact inverse
Hessian matrix. For an N-dimensional problem, only 4mN opera-
tions are needed in L-BFGS to calculate the descent direction at an
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Fig. 4. Narrow band metric as a function of iteration step for
calculations with 100 different initial values. Both rigid (a) and
deformable (b) registration calculation are plotted. In both cases, a
typical convergence is displayed in red. Rigid registration conver-
gence is achieved after less than 10 iterations. Deformable regis-
tration converges in approximatively 100 iterations.

iteration k, indirectly from the m previous values of s, = X, ; —
X, of the system variable x (30, 36). A value of m = 5 is
recommended. For a large N system, the number of operations
becomes significantly less than O(N?), as involved in BFGS cal-
culation. Starting from a positive definitive approximation of the
inverse Hessian H, at x,,, L-BFGS derives the optimization vari-
ables by iteratively searching through the solution space. At an
iteration k, the calculation proceeds as follows:

(a) Determine the descent direction p, = —H, Vf (x,);
(b) Line search with a step size oy, = arg min f(x, + ap,), where

a = 0 is the step size defined “In the L-BFGS software
package;

(c) Update x,,, = X, + o,Pis

(d) Compute H, ,, with the updated H,.

At each iteration a backtracking line search is used in L-BFGS (30)
to determine the step size of movement to reach the minimum of
falong the ray x, + ap,. For convergence « has to be chosen such
that a sufficient decrease criterion is satisfied, which depends on
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Fig. 5. The mutual information metric (a) and the narrow band
metric (b) as a function of relative displacement in the Xy plane.
Two identical magnetic resonance images (from Fig. 2a) were used
as the input fixed and floating images. The insert in each panel
shows the corresponding metric when the displacement is confined
to the x-direction. The mutual information metric is seen to be very
“noisy” and multiple maxima exist. The narrow band metric, on
the other hand, is much smoother and has a single minimum.

the local gradient and function value and is specified in L-BFGS by
the Wolfe conditions (30).

During an image registration process, the above iterative calcu-
lation based on L-BFGS algorithm continues until either a pre-set
maximum number of iterations (typically, 500 iterations) is
reached or the following stopping criterion is fulfilled:
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In our calculations, we chose € = 10~ 6. It is possible that L-BFGS
may produce unrealistic deformations in finding the minimum of
the metric. Similar to previous investigators (29), we used the
bounded version of L-BFGSB (37), where the variables represent-
ing deformation vectors are restricted to within certain limits. The
convergence behavior of the L-BFGS algorithm is studied by
starting the registration calculation with different random initial
positions. Intermediate values obtained during the optimization
calculations are recorded and plotted for comparison.

Image acquisition

The MRI images (marked as FSE-xIT2 fat) were acquired using
a 3-Tesla MR scanner (Signa; GE Medical Systems, Milwaukee,
WI). The radiofrequency (RF) excitation was achieved by using
the whole body birdcage resonator, and the MR signal was re-
ceived using a 4-element phased-array antenna (GE Medical Sys-
tems) combined with a rigid single loop receiver-only surface coil
with a fixed geometry that enables optimal tuning and matching for
use at 3T. The coil dimensions are similar to transrectal ultrasound
transducers used for routine sonographically guided prostate im-
aging and biopsy. Patient CT images were acquired using a
PQ5000 CT Scanner (Philips Medical Systems, Cleveland, OH).

600

Line divisions

Behavior of the metric function
Monitoring the change of the metric function under the relative
displacement of two input images provides a useful examination of

vaso the behavior of the solution space for image registration. To better

0350 - understand the narrow band based normalized correlation metric,
vonmmsrier | we used two identical images as input and computed the function
0050 H . _ i .

o) ™\ by. successllv.el}./ trgn‘slatlng then.l along the x- and y-directions. I.n
-0150 . . . this case, it is intuitively conceivable that the value of the metric

o . . .. . .
function is minimum when they are perfectly aligned and increases

as the two images are displaced away from each other. A desirable
metric function should exhibit a single distinct global minimum
and vary smoothly as the two images slide away from each other.
For comparison, the same calculation was also performed for
conventional mutual information metric (27). The two types of
functions are presented and reviewed by using 3D graphs, where
surface height represents the metric value.

Registration accuracy

In this study, the input images involved an MRI as the fixed
image and the same image with intentionally introduced deforma-
tions as the floating images. The ability of the narrow band
algorithm to restore from the deformation was tested. The original
image in this study serves as the “gold standard” for the evaluation.

NG metnic
400 600 800
Line divisions

Fig. 6. The narrow band metric as a function of relative displace-
ment in the xy plane and in the x-direction when the narrow band
width takes a value of 3 mm (a), 5 mm (b), and 15 mm (c). For a
small width, the narrow band has a small capture radius with the
minima of the metric accentuated. Increasingly narrow band width
enlarges the capture radius. The computation becomes more de-
manding in this case owing to the increased number of narrow
band nodes. A width of approximately 6 mm seems to balance the
two limiting factors.
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e

(c)

Fig. 7. Registration result for two clinical cases. The first row shows the colored overlay of the endorectal-based
magnetic resonance and computed tomography images before and after rigid and after deformable image registration for
the first case. The computed tomography image is used as the background. The second row shows the same for the
second clinical case.
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Figures 3a and 3b show the original and deformed MR images for
the first patient. The deformation was generated by assigning the
nodes in the original image with a set of random displacement
vectors. Eight grid points with spacing of 2.4 cm were used in the
calculation. We used the proposed algorithm to restore the distor-
tions and evaluated the algorithm’s ability to recover the gold
standard. The difference between the original and restored images
was quantified in terms of displacements of visible anatomic
landmarks. The images before and after restoration were reviewed
by using the popular checkerboard display tool, where images to
be compared are merged together in a chess-like pattern. The
original and deformed images for the second case are shown in
Figs. 3e and 3f. Similar calculation and analysis were performed
for this case.

Case study

The narrow band based image registration algorithm was ap-
plied to register ER-based MRI and CT prostate images for two
clinical cases. The MRI and CT images were acquired using the
protocols described earlier. The colored overlay of the two types of
images was generated before and after the narrow band image
registration calculations for assessment of the results. For each
case, the convergence of the calculation was also studied.

RESULTS AND DISCUSSION

Convergence analysis

The algorithm’s ability to obtain the same result with
different starting conditions was examined. In Fig. 4, we
plot the metric value as a function of iteration step starting
from 100 different initial transform parameters, {Xx;}, for the
first case shown in Fig. 3. The input images in this study
included an ER-based MRI as the floating image and the
treatment planning CT as the fixed image. Two types of
registrations were studied here: a rigid (Fig. 4a) and a
deformable (Fig. 4b) registration. For the rigid registration,
the normalized correlation converges to —0.130, after 11
iterations. The final value of the metric is found to be
independent of the initial starting conditions. For deform-
able registration, the minimum metric value was found to be
—0.399. The longest run in obtaining this solution was 218
iterations. Once again, the result was independent of the
initial starting conditions. For each type of registration, a
typical evolution of the metric as a function of the iteration
step is displayed in Fig. 4 in the red curve.

A narrow band is a compact representation of a structure
because only points adjacent to its border are used. This
permits a reduction of memory requirements for the opti-
mization process, with computation times reduced by 1 or 2
orders of magnitude. For this particular study, L-BFGS
needed approximatively 100 iterations to converge. Com-
pared with some other potentially more powerful evolution-
ary algorithms, an analysis not shown here revealed that a
typical 1 + 1 optimizer (38) needs as much as 100,000
iterations for convergence. This is reflected in the compu-
tation times, where 15 min are needed by L-BFGS for a full
study of 256 X 256 X 30 voxels, vs. more than 1 h needed
by a 1 + 1 optimizer.

Behavior of mutual information and narrow band
metric functions

In Fig. 5, we plot the mutual information and narrow
band metric values when the two identical input images are
translated on the x-y plane. Because the attempt here is to
register an MRI image (Fig. 5a) with itself, the position of
global minimum is known to correspond to a null transla-
tion. The variation of the metrics as a function of the
translation in the x-direction is plotted as inset in Fig. 5. The
mutual information metric space, presented in Fig. 5a, was
obtained with settings of 100 spatial samples and 0.4 stan-
dard deviation (27). While the general trend toward a global
solution located at the center can be deduced, the metric
space is noisy and many local minima are present. This
metric is thus not suitable to be used with gradient-based
optimizers.

As can be seen from Fig. 5b, the search space correspond-
ing to the normalized correlation metric is much smoother
than that of the mutual information metric (27) and has a
distinct minimum at the expected location. The local mini-
mum at the left is resulted from the alignment of the rectum
with the prostate. However, this minimum is shallower,
indicating a poor fit, owing to the difference in rectum/
prostate shapes. We note that with the selection of different
narrow band widths it is possible to change the capture
radius of the metric function (Fig. 6). As the narrow band
width increases, the metric capture radius increases; and at
the same time, the computation time needed to find the
solution also increases since more nodes are involved. In
this trade-off, we found a narrow band width of approxi-
matley 6 mm to be optimal for practical application.

The narrow band metric uses both voxel intensity and
delineated structures information for the registration. For
prostate MRI-CT registration, an intensity-based metric
such as the mutual information is intractable owing to the
lack of clearly differentiable anatomic structures in the CT
images (Fig. 2b) and the presence of a broad range of voxel
intensities in the MRI image (Fig. 2a). The narrow band
metric compensates for the inconveniences by restricting
the calculation to selected regions of interest. The narrow
band not only represents the shape of the contour but also a
transition zone around it. This results in a large capture
radius in the optimization calculation. As compared with
control-points based methods, where the registration accu-
racy depends heavily on the specification of the control
points, the narrow band based image registration entails
little information from the user other than the delineation of
the involved organs, which one has to do anyway for the
purpose of radiation treatment planning.

Evaluation of the algorithm’s ability of restoring from an
intentionally introduced deformation

For the deformation depicted in Fig. 3b, ideally, the
application of a deformable image registration technique
should be able to restore its original shape when the unde-
formed image (Fig. 3a) is used as a reference. To better
visualize the intentionally introduced deformation, in Fig.
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3c we show the checkerboard image of the original and
distorted image. The initial deformations up to 10 mm in the
original image are clearly visible in the checkerboard tran-
sition zone. To use the narrow band based registration tool,
the organs in the reference image were outlined and narrow
bands were generated. The restored image is shown in Fig.
3d along with the original reference image in a checker-
board fashion. Recovered and gold standard reference im-
ages differ by less than 2 mm, as assessed by comparing
displacements of the anatomic landmarks between neigh-
borhood squares of the checkerboard. The original and
restored images are highly similar, with virtually no differ-
ence visible in the checkerboard. Similar level of accuracy
was found for the second case studied (Figs. 3e-3h). In both
cases, we found that the calculation converged to the antic-
ipated solution with fewer than 220 iterations.

Case study

In Fig. 7, we show the prostate MRI-CT registration
results for two clinical cases. The same colored overlay is
constructed before (Fig. 7a for Case 1 and Fig. 7d for Case
2) and after registration calculation (Fig. 7c for Case 1 and
Fig. 7f for Case 2). In the colored overlay, the original CT
image is used as the image background. The colored overlay
represents the MRI image, with a colored scheme corre-
sponding to different MRI pixel intensities, red for high
intensities and blue for low intensities. Because of the use of
the ER probe, the shapes of both rectum and prostate were
deformed. As can be seen from Figs. 7a or 7d, the anterior
surface of the rectum was flattened. After the rigid regis-
tration calculation, we noticed that the gross misalignment
was removed (Figs. 7b and 7e). As expected, there was still
substantial deformation after the initial rigid registration
that needs to be corrected by a deformable image registra-
tion algorithm. In the next stage of the registration calcula-
tion, the deformable model was “switched on,” which re-
stored the shapes of the rectum and prostate to their regular
forms as observed in the CT images. This can be seen from
Figs. 7c for the first case or Fig. 7f for the second case.
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In our calculation, we observed that the regular grid of
BSpline control points could be mapped to a region outside
the narrow band. While it seems that this does not directly
affect the accuracy of the method, it may prolong the
calculation by computing the displacements in regions
where no metric information is available. Setups have been
proposed to adapt the splines control mesh to regions where
deformation is found to be significant (39), and the exten-
sion of the method would allow us to use the BSpline
control points defined only in the regions within the narrow
band. Implementation of this type of technique should fur-
ther reduce the computation time required to find the opti-
mal solution.

CONCLUSIONS

We have applied the narrow band algorithm for the
registration of ER-based prostate MRI and treatment plan-
ning CT images. The narrow band is a compact represen-
tation of a structure because only pixels close to the struc-
ture boundaries are considered. A distance map around
structures permits the use of simple registration metrics
without relying on introducing control points. Both valida-
tion and patient studies have indicated that the registration is
reliable and provides a valuable tool for integrating the
ER-based MRI information into radiation therapy treatment
planning. Because the contours of the organs are needed
anyway for treatment planning purposes, the approach in-
volves little additional work in constructing the narrow
bands. Our study indicated that the narrow band metric has
a smooth metric space, which permits us to use determin-
istic algorithms such as L-BFGS to optimize the system. The
narrow band registration procedure was found to be fast,
stable, and capable of providing practically acceptable ac-
curacy. Finally, the method works with CT images of any
quality, as important information is contained within the
narrow band representation specified by the user. This might
have a significant practical implication with the prevalence
of KeV and MeV cone-beam CT in clinical practice.
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DOSE-VOLUME BASED RANKING OF INCIDENT BEAM DIRECTION AND
ITS UTILITY IN FACILITATING IMRT BEAM PLACEMENT

EDUARD SCHREIBMANN, PH.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally
intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this
point, none of the existing ranking techniques considers the clinically important dose-volume effects of the
involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to
develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its
utility for IMRT beam placement.

Methods and Materials: The general consideration in constructing this angular ranking function is that a
beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the
sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach,
the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the
intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets.
When volumetric structures are involved, the complication arises from the fact that there are numerous dose
distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not indepen-
dent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose
while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by
using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP)
was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD
constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and
abdominal case with and without the guidance of the angular ranking information. The qualities of the two types
of IMRT plans were compared quantitatively.

Results: An effective angular ranking model with consideration of volumetric effect has been developed. It is
shown that the previously reported dose-based angular ranking represents a special case of the general formalism
proposed here. Application of the technique to a abdominal and a head-and-neck IMRT case indicated that the
proposed technique is capable of producing clinically sensible angular ranking. In both cases, we found that the
IMRT plans obtained under the guidance of EUD-based angular ranking were improved in comparison with that
obtained using the conventional uniformly spaced beams.

Conclusions: The EUD-based function is a general approach for angular ranking and allows us to identify the
potentially good and bad angles for clinically complicated cases. The ranking can be used either as a guidance
to facilitate the manual beam placement or as prior information to speed up the computer search for the optimal
beam configuration. Thus the proposed technique should have positive clinical impact in facilitating the IMRT
planning process. © 2005 Elsevier Inc.

Intensity-modulated radiation therapy, Inverse planning, Dose optimization, Beam orientation.

INTRODUCTION

Several previous studies have indicated that the selection of
beam directions plays an important role in intensity-modu-
lated radiation therapy (IMRT) planning (1-8). For a given
patient, a practical challenge is how to obtain the optimal
beam configuration within a clinically acceptable time. The
influence of a candidate beam configuration to the final dose

distribution is not known until an inverse planning with the
configuration is done, which necessitates a trial-and-error
process for the determination of a clinically sensible IMRT
beam configuration (9—11). The use of computer optimiza-
tion promises to automate the beam selection process (12—
15). In practice, however, beam orientation optimization is
computationally intensive because of the interplay between
beam directions and beamlet intensities. Many researchers
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have attempted to use single beam ranking to reduce the
search space (16-23). Although such technique ignores the
beam interplay and does not yield the final beam configu-
ration, it affords useful information on which are potentially
good/bad directions and is thus valuable to aid the beam
placement (24-26). Furthermore, the information can be
used as a priori knowledge to greatly improve the conver-
gence behavior of the beam orientation optimization and to
speed up the calculation process (21).

Single beam ranking functions can be divided into geom-
etry based and dosimetry based models. The underlying
difference between these models lies in what fundamental
quantities are used to define the optimality. The former
approach is essentially an extension of beam’s eye view
volumetrics (24, 27, 28) and ranks a beam direction based
on the fractional volume of sensitive structures falling into
the incident beam (16, 22, 26). The dosimetry-based tech-
nique, on the other hand, ranks a beam direction based on
patient geometry as well as the a priori dose tolerance
information of the involved sensitive structures (17, 18, 20).
In line of the latter approach, Pugachev and Xing proposed
a heuristic beam’s eye view dosimetric (BEVD) model in
which the ranking of an incident beam is gauged by the
maximally deliverable dose to the planning target volume
(PTV) without exceeding the tolerance of the sensitive
structure located on the path of the beam (20). While the
idea of their technique is quite general, practical implemen-
tation is hindered when the involved sensitive structure is a
parallel organ whose tolerance cannot be described by a
single dose value but a dose—volume relation. In this situ-
ation, the method described in Pugachev et al. (20) is not
directly applicable and the evaluation of the single beam
ranking becomes very nontrivial.

The purpose of this work is to develop a clinically sen-
sible angular ranking model with incorporation of dose—
volume effect and to show its utility for IMRT beam place-
ment. Instead of working in the dose domain, we establish
a more adequate formalism based on the concept of equiv-
alent uniform dose (EUD) (29, 30). As is well known, the
dose—volume effect of a structure is well described (31-33)
by using the EUD, which is phenomenologically defined as:

1
1 e
EUD—(K[ZD,») , (1)

where N is the number of voxels in the structure, and a is the
tumor or normal tissue-specific parameter that describes the
dose—volume effect. When a = o, the EUD is equal to
the maximal dose, and when a = —o, the EUD is equal
to the minimum dose. Tumors generally have large neg-
ative values of a, whereas serial critical structures (e.g.,
spinal cord) have large positive values and parallel critical
structures that exhibit a large volumetric effect (e.g., liver,
parotids, and lungs) have small positive values. A virtue of
the EUD-based approach is that the volumetric status of an
organ can be characterized by a single parameter instead of

two (dose and volume), making the incorporation of dose—
volume effect in the single beam ranking more tractable. A
few recent works (34-36) have attempted to relate EUD-
based formalism to dose—volume constraints, dose-based
inverse planning, and multiobjective optimization, and sig-
nificant insights have been obtained in this regard.

METHODS AND MATERIALS

Background

The figure of merit of a beam direction is generally
measured by how much dose can be delivered to the target
and is calculated using the a priori dosimetric and geomet-
ric information of the given patient. For computational
purposes, a beam direction is divided into a grid of beam-
lets. For a serial organ, each beamlet crossing the target is
an independent element and is assigned to the maximum
intensity (20). After a forward dose calculation using the
maximum beam intensity profile, the score of the given
beam direction (indexed by b) is obtained according to

1 dy\’
Sy=— > ( b), )

P
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where d,,, is the dose delivered to the voxel n by the beam
from the direction indexed by b, N is the number of voxels
in the target, and D% is the target prescription.

When the tolerance of the sensitive structure is more
accurately assessed by volumetric information, a modifica-
tion of the above procedure is needed to rank the beam
direction. The main computational difficulty here is that the
beamlets cannot be dealt with independently as there are
usually multiple dose distributions for a given dose—volume
tolerance. A practical and efficient approach is to use the
EUD model described earlier to solve the problem.

EUD as a general means for characterizing the
dose—volume tolerance

The dose volume tolerance of a sensitive structure is
more conveniently described by a single variable, namely,
the EUD tolerance. The value of EUD tolerance (and the
value of a in the EUD formula [Eqn. 1]) for a given organ
can be obtained from the literature (37). For a given case,
the figure of merit of a beam direction should now be
measured by what the beam could achieve dosimetrically
without exceeding the EUD tolerances of the organs located
on the path of the beam. Although the score can still be
evaluated by using Eq. 1 based on the integral dose to the
target, the method of determining the maximum intensity
profile for a given beam direction must be modified. In this
situation, the beamlet intensities of the maximum intensity
profile can no longer be determined individually because of
the degenerate nature of a dose—volume tolerance (i.e., there
are more than one dose distributions for a given dose—
volume tolerance). Generally, there are multiple intensity
profiles, each corresponding to a possible dose distribution
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of the given EUD tolerance. A computer algorithm is nec-
essary to find the one that delivers the maximal integral dose
to the target volume. For this purpose, we mathematically
formulated the problem into a constrained optimization, in
which the objective is to maximize S, defined in Eq. 2 with
the EUDs of the sensitive structures below their tolerance
values.

Calculation of beam ranking

The constrained optimization problem was solved using a
Lagrange multiplier method (38). For the system that we are
dealing with here, the Lagrange function takes the form of

L(x, A) = S,(x,) + X A [EUD;,(x,) — EUD'(x,) ],
(3)

where x is the system variable vector (i.e., the beamlet
intensities for a given beam), i is the structure index,
EUD;,(x) and EUD(x) are the EUD tolerance and com-
puted EUD, respectively, and A}, is the Lagrange multiplier.
A constrained sequential quadratic programming algorithm
(CFSQP) (39) with the Armijo type arc search mode (40)
was employed to optimize the system described above.
Variables to be optimized included the intensities of the
beamlets passing through the PTV. A major advantage of
the algorithm is that it is capable of dealing with nonlinear
inequality constraints (40). The calculation starts with an
initial intensity profile, in which each beamlet is assigned
with a small but random value, and then iteratively maxi-
mizes the angular ranking function while satisfying the
constraints. Briefly, the k-th iteration can be described by
the following steps:

1. Calculate the inverse Hessian matrix, H,, from the gra-
dient of L(x,)A);

2. Determine the descent direction p, = —H, V f(x);

3. Line search with a step size o = argmin f(x, + apy),

where « is the step size defined in tah>é) CFSQP software
package;

4. Update X, 11 = X T Py

5. Check stopping criteria. If not satisfied, repeat from 1.

CFSQP calculation stops either when a maximum num-
ber of 200 iterations is reached or when the difference in the
values of the ranking function between two successive
iterations becomes less than 10~ °. All calculations are im-
plemented in an in-house treatment planning platform (6).

It is important to emphasize that the goal of the above
calculation is not to find the optimal IMRT solution. In-
stead, we are searching for the beam profiles that deliver the
highest achievable dose in the target without violating the
dose—volume or EUD tolerances of the involved sensitive
structures. In the final solution, any increase in the beamlet
weights would lead to a dose exceeding the volumetric
tolerance of a sensitive structure.
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Fig. 1. Flow chart of the overall plan optimization process. EUD =
equivalent uniform dose.

Optimization of IMRT beam profiles

The flow chart of the plan optimization process is shown
in Fig. 1. We used a hybrid of a gradient-based algorithm
(LBFGS) and a genetic-like algorithm (NSGA-IIc) (41) to
obtain the optimal IMRT plan after the beam configuration
is selected. The LBFGS is specially designed for dealing
with systems with a large number of variables (42). A
least-squares cost function was used as the objective for
each structure, with the prescription dose set to 0 for sen-
sitive structures to continuously lower the doses to the
sensitive structures if there is room for improvement. The
details of the LBFGS algorithm and our experience in
implementing the algorithm were reported in a previous
work (43). The EUDs of the involved structures were em-
ployed to generate the solution pool through the combina-
tional use of a genetic-like algorithm (NSGA-IIc) (41) (see
Fig. 1 flow chart for details). At each iteration, the EUDs of
the new solution are compared with the plan within the
solution pool and ranked according to the rules stated in the
flow chart. A solution that violates less the EUD constraints
has a higher probability to survive in the next generation
and thus a larger chance to be selected as the final solution.
In this sense, the EUDs here act as “soft constraints” in
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conventional optimization or the decision-function in the
two-step optimization proposed by Xing et al. (44). This
setup has the advantage that the EUD constraints do not
directly interfere with the objective function of the system.
This model of implementing the constraints was found to be
efficient in a previous study (6).

Case studies

The performance of the above algorithm and the advan-
tage of the proposed angular ranking technique are illus-
trated using two clinical IMRT cases: an abdominal tumor
with the kidney, spinal cord, and liver delineated as sensi-
tive structures, and a head-and-neck case adjacent to the
parotid and spinal cord. For each case, we computed the
coplanar angular score function (from 0° to 360°) in an
increment of 5°. The photon beam energy was 15 MV for
both cases.

To understand the behavior of the technique in modeling
different degrees of volumetric effect, we computed the
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score function for a series of values of parameter a in each
case. As a increases to a large positive value, the organ
behaves as a serial structure and the score function obtained
by using the proposed technique should converge to the
results obtained using the method outlined by Pugachev and
Xing (20).

To illustrate the advantage of the technique, we generated
a five-field IMRT treatment plan with the beam configura-
tion obtained under the guidance of the computed angular
score function for each patient. The plans were then com-
pared with that obtained with five uniformly spaced beams
(the beam directions are 0°, 72°, 144°, 216°, and 288°). In
practice, 5~7 beams are often used for IMRT treatment
because a good compromise can be achieved between de-
livery efficiency and the treatment quality. After the beam
configuration was determined, the beamlets were optimized
using a multiobjective approach described above (see Fig.
1) to yield the final IMRT plan. The optimization result is a
database of plans representing the best achievable tradeoff

b)

. ~

- 5
210 T ——150

f‘l 80

Fig. 2. (a) Angular ranking function for a series of a parameters. The selected five directions for intensity-modulated
radiation therapy planning are labeled by arrows. The curve depicted by the open circles represents the result obtained
using the approach described in Pugachev et al. (20). (b) Angular score obtained with published equivalent uniform dose
tolerances and model parameters superimposed on the patient’s geometry. Angles selected for intensity-modulated
radiation therapy planning are shown by arrows. (c) Dose—volume histograms corresponding to the intensity-modulated
radiation therapy plans obtained with (dot-dashed curves) and without (solid) the guidance of the angular ranking

function.
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between optimization objectives. The dose—volume histo-
grams (DVHs) of the target and sensitive structures were
used for the plan comparison.

To better assess the performance of the proposed tech-
nique, two additional experiments were carried out for the
head-and-neck case. First, we intentionally selected the set
of beams with the worst (corresponding to the dips of the
beam orientation ranking function) and the best (corre-
sponding to the peaks of the beam orientation ranking
function, as chosen above) individual performances. The
resulting IMRT plans were then compared quantitatively.
This study highlights the importance of beam selection and
the possible influence of individually selected beams. For
the abdominal patient, we also investigated the differences
in the final IMRT treatment plans obtained using the new
method with EUD-based angular score function and the
previous non-EUD based score function.

RESULTS

Abdominal case

The angular score functions corresponding to different
values of the a parameter are presented in Fig. 2a along with
the score obtained using the method reported in Ref. 20 for
serial organs. As can be intuitively anticipated, the EUD-
based angular score function approaches to the latter curve
(denoted by the circles) as a increases. The values of EUD
tolerances for the involved organs were taken from the
literature (Table 1) (45). The score function corresponding
to the a parameters extracted from Sang and Dunscombe
(45) is also presented in Fig. 2b, where a polar graph has
been overlayed on the patient’s geometry to better interpret
the curve. The influence of the sensitive structures is clearly
reflected in the score function. The lowest scores occur at
the angles close to 50° and 320°, from which directions the
beam passes through the kidneys and the liver. The score
function peaks at directions where a large portion of PTV
can be irradiated with minimal intersection of sensitive
structures.

A general way for beam placement after the BEVD score
is obtained is to start with an equispaced beam configuration
with one of the beams placed at the angle with the highest
BEVD score value. The angular score described above is
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obtained under the assumption of a single incident beam and
thus reflects only one facet of the beam configuration se-
lection problem. The angles of the rest of the beams are
adjusted in such a way that the final beam configuration
balances the requirement of the single beam BEVD score
(which favors placing beams at the peak positions of the
BEVD score function) and the interplay between the beams
(which prefers a beam configuration with the beams away
from each other). In other words, to obtain the final beam
configuration, it is required to consider the interplay be-
tween the incident beams. The merit of the proposed tech-
nique is that it is capable of identifying potentially “good”
and “bad” directions even when the sensitive structures are
volumetric in their responses to radiation, and thus provides
a useful guidance for IMRT beam placement. In particular,
it permits us to avoid placing beams in the “bad” beam
directions (the dips of the score function). One would oth-
erwise have to choose a beam configuration entirely based
on empiric “guessing.” Based on the computed score func-
tion, we placed the five incident beams at 35°, 95°, 190°,
280°, and 335°, as indicated by the arrows in Figs. 2a and
2b. The DVHs of the corresponding IMRT plan are plotted
in Fig. 2¢ as dot-dashed lines. The DVHs of a conventional
IMRT plan with five equispaced beams are also plotted in
Fig. 2c as solid curves.

The computed EUD values of the involved structures for
IMRT plans with equispaced beams and newly proposed
EUD-based and non-EUD-based BEVD-selected beams are
also listed in Table 1. We observed that the IMRT plan with
the beam configuration selected under the guidance of the
EUD-based scoring function represents the best treatment
when judged using the EUDs of the involved structures.
This is not surprising because the EUDs of various organs
were fully considered during the beam configuration selec-
tion. The IMRT plan with beams derived from the non-
EUD-based score function (the five beam directions derived
from this score function were 20°, 120°, 175°, 260°, and
350°) was inferior to the plan mentioned above but better
than that of the equispaced beam configuration. As seen
from the table and Fig. 2c, the liver and both kidneys
sparing are improved for the same PTV coverage. For
example, the fractional volume of the right kidney receiving
a dose of 15 Gy is reduced from 37% to 23% and the

Table 1. EUD tolerances (45) and calculated EUD values for IMRT plans with five equi-angled
and BEVD-selected beams for the abdominal case

Left Right
kidney kidney Liver Cord
o 5.1 5.1 0.59 7.4
EUD tolerance 28 28 39 43
EUD (equispaced beams) 16.82 11.96 8.77 5.31
EUD (BEVD-selected beams) 14.24 8.34 6.97 6.68
EUD (beams with non-EUD-based BEVD) 15.23 9.58 7.03 6.12

Abbreviations: BEVD = beam’s eye view dosimetric; EUD = equivalent uniform dose; IMRT

= intensity-modulated radiation therapy.
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Fig. 3. Convergence behavior of the CFSQP algorithm for the 255°
beam direction. Presented are evolutions of the angular ranking (a)
and the sensitive structure constraints (b) as function of the itera-
tion step. Only the right kidney and the liver influence the algo-
rithm’s convergence because other structures are not on the path of
the beam.

reductions in lower doses are even significant. In the IMRT
plan with BEVD-selected beam configuration, however, the
maximum dose to the spinal cord is increased slightly. This
is because a relatively high tolerance EUD was assigned to
the cord, which therefore imposed less constraint on the
angular ranking when the beam passes through it. For this
case, the most dose-limiting organ is the left kidney when
one attempts to escalate the target dose. Hence, the slight
increase in the cord dose has little clinical impact. In a
sense, the increase in the cord dose is an indication that the
newly introduced ranking function can more effectively
balance the requirements of the involved structures.
Convergence behavior of the CFSQP algorithm is dem-
onstrated by plotting the angular score as a function of
iteration step (Fig. 3a) for the 255° direction. The EUDs of
the sensitive structures at each iteration step are shown in
Fig. 3b. With the chosen initial beamlet intensities (small
but random values), the angular score is progressively in-
creased while constraints are progressively saturated, lim-
ited by the tolerances of the sensitive structures. Constraints
of the sensitive structures that are not on the path of the
beam remain to be constant throughout the iterative calcu-
lation. In this particular situation, the right kidney is the
most dose-limiting organ. Of course, being dose-limiting for
one of the beams does not mean that the organ is dose-
limiting when all the beams are considered. Indeed, as seen
from Fig. 2b and Table 1, it turns out that the left kidney is

most dose-limiting for the chosen beam configuration and
receives the highest dose or EUD. Generally speaking, this
is not a symmetric system from the dosimetric point of
view, even though the two kidneys have the same EUD
tolerance. The asymmetric behavior is caused primarily by
the presence of the liver near the right kidney. When the
dose to the liver is limited to its EUD tolerance, a by-
consequence is that the dose to the right kidney is also
lowered. On the other hand, the left kidney is the sole
dose-limiting organ on the left side and a much higher dose
is delivered to it to deliver the prescribed dose to the target
volume. The asymmetry here can also be seen from the
angular ranking function (Fig. 2a).

Head-and-neck case

Dependence of EUD score on the a parameter is pre-
sented in Fig. 4a. As a increases, the angular score curve
approaches to the curve computed using the method out-
lined in Pugachev et al. (20) (denoted by the open circles).
This calculation provides a useful check of the new algo-
rithm. It is interesting to note that the change in the peak
positions of the angular function can be as large as 20° when
the sensitive structures are changed from serial (correspond-
ing to a high a value) to parallel (corresponding to a low a
value). The change of the score function in amplitude is also
striking (from ~0.2 to ~0.8 at 80° and 280°). As the
structure becomes more volumetric (e.g., when @ = 0.1), the
score function becomes less “spiky.”

When the published values of EUD tolerances (45) are
used (Table 2), the lateral directions passing through parotid
are disadvantageous, whereas the anterior-posterior direc-
tions passing through the cord have slightly higher rankings.
The polar score function overlayed on the patient’s geom-
etry is presented in Fig. 4b. It is clearly seen that low scores
occur at ~90° and ~270°, from which directions the beams
pass through the parotids. Moderate scores appear at 0° and
180°, from which directions the beams pass through the
cord. In this case, as can be intuitively imagined, high
angular rankings appear in the oblique directions when the
beam is less intercepted by the sensitive structures.

Under the guidance of the ranking function depicted in
Fig. 4a, we selected 45°, 125°, 190°, 245°, and 310° for
the five-beam IMRT treatment. The selected directions
are indicated in Figs. 4a and 4b by arrows. The DVHs of
the involved structures are shown in Fig. 4c (dot-dashed
lines) along with the results obtained by using five uni-
formly spaced beams. As a result of BEVD guidance for
beam placement, the IMRT plan is improved signifi-
cantly. Together with a dose improvement in dose cov-
erage of the PTV, all sensitive structures are better
spared. The improvement in brainstem sparing is most
distinct as compared with the conventional plan. The
resulting EUD of the brainstem was reduced by ~65%
(see Table 2). The reduction in the parotid EUD was
found to be ~16%. The fractional volume of the spinal
cord receiving a dose of 14 Gy is reduced from 32% to
22%. Clinically, the improvement in the dose homoge-
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neity within the PTV may have some practical implica- or, in the case of recurrence, for the retreatment. The
tions in enhancing the tumor control probability. In ad- convergence behavior of the optimization calculation for
dition, better sparing of the involved sensitive structures the 180° direction is presented in Fig. 5. Once again, it is
yields room for possible boost treatment of the patient, seen that the calculation converges rapidly. The con-

Table 2. EUD tolerances (45) and calculated EUD values for IMRT plans with five equi-angled
and BEVD-selected beams for the head-and-neck case

Parotid Brainstem Cord Score
a 5.0 4.6 74
EUD tolerance 30 49 43
EUD (equispaced beams) 16.67 27.55 20.99 1.30
EUD (BEVD-selected beams) 14.00 9.50 19.56 1.33
EUD (beams with worst BEVD scores) 18.71 22.82 20.29 1.27

Abbreviations as in Table 1.
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straints imposed by the parotid glands are satisfied from
the beginning of the iterative calculation because the
beam does not pass them.

In Fig. 6 we compare the DVHs for IMRT plans obtained
with five beams placed at the best and worst individual
performance directions as revealed by the BEVD score
function. The worst beam directions were identified to be
25°, 80°, 170°, 280°, and 340°. As seen from Fig. 6, the
PTV dose was deteriorated uniformly when the worst beam
configuration was used for IMRT planning. Simultaneously,
the doses to all the sensitive structures are increased as
compared with that with best individual performance
beams. The computed EUDs listed in Table 2 also support
the above observation. This comparison study underscores
the importance of beam orientation selection and provides
additional evidence that the BEVD is a useful tool to facil-
itate IMRT planning.

DISCUSSION

Increasing the effectiveness of radiation therapy depends
on improving our understanding of dose—volume factors
affecting tolerance and local control and developing tech-
niques for incorporating the volumetric data into IMRT
treatment plan optimization. To rank an incident beam di-
rection in the presence of volumetric organs, a conceptually
simple approach is to sample the tolerance dose distribu-

tions of the structures according to the dose—volume toler-
ance requirement and to compute the score for each sam-
pling (46, 47). With multiple sampling, we can obtain a
“band” of scores rather than a single score curve. The best
achievable target dose corresponds to the top of the band,
which can be used for guiding the beam placement. While
conceptually simple, sampling requires a large amount of
computation and is difficult to implement. In this work we
proposed a more practical and efficient approach to solve
the problem. A more natural and computationally efficient
method to consider the dose—volume effect in the angular
ranking is to use the EUD model, which was first developed
by Niemierko to characterize the dose-volume effect. A
major feature of the EUD formalism is that it allows us to
use a single parameter to capture the dosimetric or volu-
metric characteristics of an organ. Several studies (34, 36,
48-50) have shown the utility of the formalism in plan
optimization.

One of the technical hurdles in calculating the EUD-
based angular score ranking is that, for a given set of EUD
tolerances, there are multiple intensity profiles and the one
that yields the highest score function (2) needs to be found
using a constrained optimization algorithm. We found that
the CFSQP implemented in this work was capable of
quickly converging to a stable solution for the cases studied.
As described in the previous section, the IMRT plans ob-
tained with beam configurations chosen based on the EUD-
based score compares favorably with IMRT plans obtained
using other approaches, including equispaced beams and
beams obtained under the guidance of a non-EUD-based
score function. We note that, because the non-EUD-based
score function represents a special case of the general EUD-
based function, there may be cases where the EUD-based
score yields the same IMRT plan as the non-EUD-based
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Fig. 6. Comparison of dose—volume histograms of intensity-mod-
ulated radiation therapy plans with the best and worst individual
performance directions as identified by the angular ranking func-
tion.



592 1. J. Radiation Oncology ® Biology ® Physics

score (when all the organs involved are serial). However, it
is important to keep in mind that the EUD-based function is
a more general approach and is needed when volumetric
organs are involved.

Generally speaking, the optimal beam configuration
needs to balance the single beam angular ranking and the
beam interplay. The former favors placing beams at the
peak positions of the BEVD score function, whereas the
latter prefers a beam configuration with the beams away
from each other. Although the two factors are not always
conflicting with each other, the beams other than the one
placed at the highest peak often need to be moved away for
BEVD score peaks to separate the beams. We admit that
there exists a certain uncertainty in the placements of these
beams. However, the uncertainty in this process is far less
when compared with the situation where no BEVD infor-
mation is available. In other words, the introduction of
angular score function significantly reduces the size of the
beam configuration search space and enables us to quickly
obtain a clinically sensible plan. The results of this study
demonstrate the effectiveness of a newly developed algo-
rithm that incorporates the volumetric information of the
involved organs. Further investigation into this technique
should be performed to investigate other types of clinical
cases and to develop a full beam orientation optimization
method to take advantage of the a priori knowledge about
the angular search space as derived from the BEVD score
evaluation (21).
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CONCLUSIONS

An important issue in IMRT beam orientation ranking is
how to incorporate the existing clinical endpoint data into
the calculation. In this work we have described an effective
method for incorporating the dose—volume effects into the
evaluation of single beam ranking. In the proposed tech-
nique, the volumetric effect of an organ is characterized by
the EUD and the ranking of a beam direction is assessed by
the dose delivered to the PTV without exceeding the EUD
tolerances or dose—volume limits of the sensitive structures.
Because of the degenerate nature of the volumetric toler-
ance, an optimization algorithm is needed to find the max-
imum beam intensity profile from the pool of candidate
beams that produce the same EUD. The EUD-based angular
score allows a fast evaluation of all accessible beam angles
based on the a priori volumetric and geometric information
of the patient. Dosimetric or geometrical scoring schemes
proposed previously by different investigators represent
special cases of the general formalism here. Application of
the reported technique to two clinical IMRT cases indicates
that the method is capable of identifying potentially good
and bad directions and is useful to guide the beam place-
ment process. The information can also be used as prior
knowledge to facilitate the full beam orientation optimiza-
tion process (21). Considering the relative simplicity of the
model and the efficiency of the calculation, the proposed
technique should be a useful addition to the armamentarium
of IMRT planning.
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ABSTRACT. A multiscale image registration technique is presented for the reg-
istration of medical images that contain significant levels of noise. An overview
of the medical image registration problem is presented, and various registration
techniques are discussed. Experiments using mean squares, normalized corre-
lation, and mutual information optimal linear registration are presented that
determine the noise levels at which registration using these techniques fails.
Further experiments in which classical denoising algorithms are applied prior
to registration are presented, and it is shown that registration fails in this case
for significantly high levels of noise, as well. The hierarchical multiscale image
decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and
accurate registration of noisy images is achieved by obtaining a hierarchical
multiscale decomposition of the images and registering the resulting compo-
nents. This approach enables successful registration of images that contain
noise levels well beyond the level at which ordinary optimal linear registration
fails. Image registration experiments demonstrate the accuracy and efficiency
of the multiscale registration technique, and for all noise levels, the multi-
scale technique is as accurate as or more accurate than ordinary registration
techniques.

1. Introduction. Often in image processing, images must be spatially aligned to
allow practitioners to perform quantitative analyses of the images. The process
of aligning images taken, for example, at different times, from different imaging
devices, or from different perspectives, is called image registration. More precisely,
image registration is the process of determining the optimal spatial transformation
that maps one image to another. Typically, two images are taken as input, and
the registration process is then the optimization problem which determines the
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geometric mapping that brings one image into spatial alignment with the other
image. In practice, the particular type of transformation as well as the notion of
optimal will depend on the specific application.

Examples of applications in which image registration is particularly important
include astro- and geophysics, computer vision, remote sensing, and medicine. In
this paper, we will focus on medical image registration. Image registration plays an
important role in the analysis of medical images. For example, images taken from
different sensors often contain complementary information. By bringing the two
images into alignment so that anatomical features of one modality can be detected
in the other modality, the information from the different modalities can be com-
bined. In neurosurgery, for example, tumors are typically identified and diagnosed
using magnetic resonance images (MRI), but stereotaxy technology (the use of sur-
gical instruments to reach specified points) generally uses computed tomography
(CT) images. Registration of these modalities allows the transfer of coordinates
of tumors from the MRI images to the CT images. See [14] for a discussion of
the applications of multimodality imaging to problems in neurosurgery. As an-
other example, medical image data acquired prior to diagnosis can be compared
with data acquired during or after treatment to determine the effectiveness of the
treatment. To compare images taken at different times, however, the images must
first be brought into spatial alignment so that actual differences in the data can be
distinguished from differences that result from the image acquisition process.

In the context of medical imaging, the goal of the registration process is to remove
artificial differences in the images introduced by patient movement, differences in
imaging devices, etc., but at the same time, to retain real differences due to actual
variations of the objects. Medical images, however, often contain significant levels
of noise due to instrumentation imperfections, data acquisition techniques, image
reconstruction methods, transmission and/or compression errors, and other factors.
Although numerous successful image registration techniques have been published,
we will see that ordinary image registration algorithms can fail to produce mean-
ingful results when one or both of the images to be registered contains significant
levels of noise.

Since noise is generally present in digital images, image denoising is a funda-
mental problem in image processing. Indeed, many approaches to image denoising
have been presented. Thus a simple solution to the problem of image registra-
tion in the presence of noise would be to first apply a denoising algorithm to the
noisy image(s), and then use existing image registration techniques to register the
denoised images. However, common denoising algorithms, most notably spatial fil-
tering algorithms, have the disadvantage that while they are successful in removing
noise, they often remove edges as well. Additionally, most denoising procedures
require a priori knowledge of the noise level, variance, and/or model, information
not typically known in practice. For these and other reasons, we will demonstrate
that ordinary image registration of noisy images fails to produce acceptable results
even when classical denoising algorithms are applied to the noisy images prior to
registration (for significantly high levels of noise). Moreover, even more advanced
denoising techniques such as anisotropic diffusion (which was designed to remove
noise while preserving edges) will be shown to fail to register noisy images. Thus,
we seek a technique that enables successful image registration when one or both of
the images to be registered is noisy.
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Generally, we would like to consider an image f consisting of coarse and fine
scales. The general shape and main features of an image are considered the coarse
scales, and details and textures, such as noise, are the fine scales of the image.
Separating the coarse and fine scales of an image, therefore, is an effective tool in
denoising. Indeed, several denoising algorithms have been proposed using separa-
tion of the coarse and fine scales of an image, most notably [19], [18], [11], and [20].
The method presented in [20] presents a multiscale technique in which an image
f is decomposed in a hierarchical expansion f ~ X;u;, where the u; (called the
components of f relative to the decomposition) resolve edges of f with increasing
scales. More precisely, for small k, the sum Z?uj is a coarse representation of the
image f, and as k increases, the sum captures more and more detail (and hence,
noise) of the image.

In this paper, we present a multiscale image registration technique based on the
multiscale decomposition of [20] that is particularly effective when one or both of
the images to be registered contains significant levels of noise. Since the hierarchi-
cal expansion f ~ Yj;u; decomposes the image f into components which contain
increasingly fine scales, we expect a component-wise registration algorithm to pro-
duce accurate results for noisy images. That is, given a noisy image f, for small
values of k, the component Z?uj retains the general shape of the image f while
removing the details and noise of the image. Thus, if we wish to register the im-
age f with another image, say g, we expect that registration of the components
Z’;uj with g will provide an accurate estimation of the actual transformation that
brings the two images into spatial alignment with one another, for sufficiently small
values of k. Similarly, if both f and g are noisy, we expect decomposing both im-
ages and performing component-wise registrations should accurately estimate the
optimal transformation. We will demonstrate that multiscale image registration
enables successful image registration for images that contain levels of noise that are
significantly higher than the levels at which ordinary registration fails.

This paper is organized in the following way. In Section 2, we discuss the image
registration problem and review standard image registration techniques. In Sec-
tion 3, we present the problem of image registration in the presence of noise, and
illustrate the failure of current techniques when one or both of the images to be
registered contains high levels of noise. In Section 4, we briefly discuss classical
and modern denoising techniques, and illustrate the failure of ordinary image reg-
istration of noisy images even when the images are denoised prior to registration.
In Section 5, we review the multiscale image decomposition of [20], and illustrate
the results of the hierarchical multiscale decomposition obtained upon applying the
algorithm to noisy images. In Section 6, we present image registration techniques
based upon the multiscale decomposition described in Section 5, and in Section 7,
we present the results of our multiscale image registration experiments.

2. The registration problem. Given a fized and moving image, the registration
problem is the process of finding an optimal transformation that brings the moving
image into spatial alignment with the fixed image. While this problem is easy to
state, it is difficult to solve. The main source of difficulty is that the problem is ill-
posed, which means, for example, that the problem may not have a unique solution.
Additionally, the notion of optimality may vary for each application: for example,
some applications may require consideration only of rigid transformations, while
other applications require non-rigid transformations. Finally, computation time
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and data storage constraints place limitations on the complexity of models that can
be used for describing the problem. This following discussion of image registration
follows the presentation in [12].

2.1. The mathematical setting. A two-dimensional gray-scale image f is a map-
ping which assigns to every point x € Q C R? a gray value f(z) (called the intensity
value of the image at the point ). We will consider images as elements of the space
L?(R?). Color images can be defined, for example, in terms of vector-valued func-
tions £ = (f1, f2, f3) representing the RGB-color scales. For the medical imaging
applications that we are interested in, images are in fact given in terms of discrete
data, and the function f must be obtained by interpolation. We will not discuss
this construction here, but we will assume that an interpolation method has been
chosen.

Image registration is necessary, for example, for two images of the same object
that are not spatially aligned. This occurs when the images are taken at different
times, from different perspectives, or from different imaging devices. The basic
input data to the registration process are two images: one is defined as the fixed
image f(x) and the other as the moving image m(x). The goal is then to find a
transformation ¢ such that the fixed image f(z) and the deformed moving image
mg(z) := m(¢(x)) are similar. To solve this problem in a mathematical way, the
term similar needs to be defined appropriately. For example, if the images to
be registered are taken from different devices, there may not be a correspondence
between the intensities f(z) and my(z) for an optimal ¢. Additionally, we may
consider measures of similarity between the images which are not related to the
intensities. Thus, the registration problem necessarily involves a discussion of the
distance measures, or metrics, used to compare images. The general problem can
then be stated as follows.

Given a distance measure D : (L?(R?))? — R and two images f(x),m(x) €
L?(R?), the solution ¢ of the registration problem is given by the following mini-
mization problem:

¢ = argmin D(f,my). (1)
P:R2—R2

In many applications, the set of allowable transformations to be considered in
the minimization problem (1) is restricted to a strict subset of the set of all maps ¢ :
R? — R2. For example, we may require the transformation ¢ to be smooth, or we
may impose specific parametric requirements, such as requiring the transformation
to be rigid, affine, polynomial, etc.

2.2. Landmark-based registration. Landmark-based registration is an image
registration technique based on a finite set of image features. The problem is to
determine the transformation such that for a finite set of features, any feature of
the moving image is mapped onto the corresponding features of the fixed image.
More precisely, let F(f,j) and F(m,j), j =1,...,m be given features of the fixed
and moving images, respectively. The solution ¢ of the registration problem is then
a map ¢ : R? — R? such that

F(f,j) = ¢(F(m,j)), j=1,...m. (2)
For a more general notion of landmark-based registration, we define the following
distance measure:
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m
D"M(g) := Y |IF(f.5) = ¢(F(m, j)]IF, 3)

j=1
where || - ||; denotes a norm on the landmark, or feature, space. For example, if
the features are locations of points, then || - ||; = || - ||rz. We can then restate (2)

as the minimization problem in which the solution ¢ : R? — R? of the registration
problem is given by:

¢ = argmin DEM (y)). (4)
P:R2—R2

To solve this minimization problem, the transformation either is chosen to be an
element of an n-dimensional space spanned, for example, by polynomials, splines,
or wavelets, or it is required to be smooth in some sense. In the first case, the
features to be mapped are the locations of a number of user-supplied landmarks.
Let xx, k= 1,...n be the basis functions of the space. Then the minimization of

m
DEM(@) ==Y |IF(f,5) = o(F(m, p)II}
j=1
can be obtained upon expanding ¢ = (¢1,¢2) in terms of the basis functions xx
and solving the resulting least squares problems.

In the case in which we require the transformation ¢ to be smooth, we introduce
a functional which imposes smoothness restrictions on the transformation. That is,
we look for a transformation ¢ which interpolates the features F(f,j) and F(m, j),
and which is smooth in some sense. Such a transformation is called a minimal norm
solution, and it turns out (see [8]) that the solution can be expressed in terms of
radial basis functions.

Landmark-based registration is simple to implement, and the numerical solution
requires only the solution of a linear system of equations. However, the main draw-
back of the landmark-based approach is that the registration process depends on
the location of the landmarks. As the detection and mathematical characteriza-
tion of landmarks (for example, anatomical landmarks in medical images) is not
fully automated, the landmarks must be user-supplied, and this can be a time-
consuming and difficult process, even for a medical expert; see, for example, [17].
Additionally, landmark-based registration does not always results in a physically
meaningful registration. See [12, p. 44], for a simple example of a situation in
which landmark-based registration fails to produce meaningful results.

2.3. Principal-axes-based registration. Principal-axes image registration is based
on the idea of landmark-based registration, but it uses features that can be automat-
ically detected. These features are constructed as follows. For an image f : R? — R,
and a function g : R?> — R, we define the expectation value of ¢ with respect to f
by

_ Jre9(@)f(2)

Ey(g) = 2D/ & (5)
Jpa 9(@) dz

If u:R? —» R™*" we set Ef(u) := Ef[u; ] € R™*". The center of an image f is

defined by

Cy :=Ef[r] € R?, (6)
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and the covariance by

COVf = Ef[(x—Cf)(x—Cf)T] €R2X2. (7)

Given fixed and moving images, f(z) and m(z), the centers ¢; and ¢, and
eigendecompositions of the covariance matrices Covy and Cov,, are used as the
features Fj, and the registration problem is to compute ¢ : R?2 — R? such that
F;(m(¢)) = Fi(f) for the features Fj.

This method is described in detail in [1]. The principal-axes method of image
registration has the advantages that it is computationally fast and simple and re-
quires few registration parameters, but has the disadvantages that it is not suitable
for images of multiple modalities and that the solutions may be ambiguous. In par-
ticular, the principal-axes-based method cannot distinguish between images with
the same center and covariance, even though images with very different structure
and orientation may have the same center and/or covariance.

2.4. Optimal parametric registration. An alternative approach to registration
is to use methods that are based on the minimization (or maximization) of some
distance measure, or metric, D. The transformation ¢ is restricted to some param-
eterized space, and the registration can be obtained by minimizing (or maximizing)
the distance D over the parameterized space. In particular, we will discuss metrics
based on intensity, correlation, and mutual information. Given a metric D, a fixed
image f, and a moving image m, optimal parametric registration is the problem of
finding a transformation ¢ in some pre-specified parameterizable space such that
D(f,m(¢)) is minimized (or maximized in certain cases). Examples of commonly
used parameterizable spaces in image registration are polynomial and spline spaces.
We will primarily be interested in rigid and affine linear transformations. An affine
linear map is a map of the form ¢(z) = Az +b, A € R?*2, det A > 0, b € R%
Such a map allows rotations, translations, scales, and shears of the coordinates. A
translation (or rigid) transformation is a special case of an affine transformation
which allows only rotations and translations of the coordinates, and in this case,
the matrix A is required to be orthogonal with determinant 1. Optimal parametric
registration is probably the most commonly used image registration technique.

To minimize D(f, m(¢)), we must choose an optimization technique. That is, an
optimal parametric registration technique is described by a metric to be minimized
(or maximized) and an optimizer which controls the minimization (or maximiza-
tion). The implementation of the registration algorithm works in the following
way: at each iteration, the distance D between the two images is computed. An
affine transformation is then applied to the moving image, and the distance between
the images is recomputed. In theory, this process continues until the distance is
minimized (or maximized), though in practice there is some stopping criterion.

At each stage, the optimizer determines the parameters of the transformation
that will be applied to the moving image. Examples of commonly used optimiz-
ers include gradient descent and regular step gradient descent. Gradient descent
optimization advances the parameters of the transformation in the direction of the
gradient, where the step size is governed by a user-specified learning rate. Regular
step gradient descent optimization advances the parameters of the transformation
in the direction of the gradient where a bipartition scheme is used to compute the
step size.
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2.4.1. The mean squares metric. The mean squares metric computes the mean-
squared pixel-wise difference in intensity between two images f and m:

7 * N Z ’ (8)

where N is the total number of pixels consldered7 fi is the i*" pixel of image f, and
m; is the i*" pixel of image m. Note that the optimum value of the mean squares
metric is 0, and poor matches between the images f and m result in large values of
MS(f, m). This metric has the advantage that it is computationally simple. It is
based on the assumption that pixels in one image should have the same intensity
as (spatially) corresponding pixels in the second image. Thus, the mean squares
metric is restricted in practice to images of the same modality.

2.4.2. The normalized correlation metric. The normalized correlation metric com-
putes pixel-wise cross-correlation and normalizes it by the square root of the auto-
correlation function:

M=

> (fi-mi)
C(f,m) = - — e (9)

N N ’
>R X mi
i=1 i=1

where N, f;, and m; are as defined for the mean squares metric. The negative
sign in (9) causes the optimum value of the metric to occur when the minimum is
reached. Thus the optimal value of the normalized correlation metric is -1. As with
the mean squares metric, the normalized correlation metric is restricted to images
of the same modality.

2.4.3. The mutual information metric. Mutual information is an information-theoretic
approach to image registration that was proposed independently by Viola and Wells
[22] and Collignon et al. [4] in 1995. The idea is that mutual information computes
the amount of information that one random variable (here, image intensity) gives
about another random variable (here, intensity values of another image). More
precisely, given a fixed image f(z) and a moving image m(z), we wish to compute
the transformation ¢ which mazimizes the mutual information; i.e.,

¢ = arg max I(f(x), m(é(x)))- (10)

Maximization of the mutual information criterion assumes that the statistical de-
pendence between corresponding image intensity values is maximized when the
images are geometrically aligned.

The mutual information I(f(x), m(4(x)) is defined in terms of entropy, where
we consider x as a random variable over coordinate locations in the coordinate
system of the fixed image. Let h(-) denote the entropy of a random variable:

:= — [ p(z)Inp(z) dz, where p(x) is the probability density function of the
random varlable x. Note that it is not clear how to construct p(x); we will discuss
methods for estimating the probability densities. The joint entropy of two random
variables  and y is given by h(z,y) = — [ p(z,y)Inp(z,y) dz dz, where p(z,y) is
the joint probability density function of the random variables x and y. Entropy can
be considered as a measure of the uncertainty or complexity of a random variable.
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If  and y are independent, then p(z,y) = p(x)p(y), so h(z,y) = h(x) + h(y).
However, if there is any dependency (as would be the case if  and y are intensity
values of images of the same object), then h(z,y) < h(x) + h(y). The difference is
defined to be mutual information:

I(f(z), m(d(x))) = b(f(x)) + h(m(d(x)) — h(f (), m(d(x)))- (11)

The terms in (11) can be interpreted in the following way. The first term,
h(f(x)), is the entropy of the fixed image and is independent of the transformation
¢. The second term, h(m(¢p(x))), is the entropy of m(¢(z)), so maximization of
mutual information encourages transformations ¢ for which m(¢(x) has a high level
of complexity or uncertainty. The third term —h(f(x), m(¢(x))) is the negative joint
entropy of f(x) and m(¢(x)), so maximization of mutual information is related to
minimization of the joint entropy of f(z) and m(¢(z)). A detailed overview of
mutual information based registration can be found in [16].

Mutual information has the following properties. Let u(z) and v(x) denote two
images.

1. I(u(z),v(x)) = I(v(z),u(z)). Mutual information is symmetric.

2. I(u(x),u(x)) = h(u(x)). The information an image contains about itself is
equal to the entropy of the image.

3. I(u(z),v(z)) < h(u(z)) and I(u(z),v(z)) < h(v(z)). The information that
the images contain about each other can not be greater than the information
contained in the individual images.

4. I(u(z),v(z)) > 0.

5. I(u(z),v(xz)) = 0 if and only if u(x) and v(x) are independent. If the images
u(z) and v(x) are independent, no information about one image is gained
when the other image is known.

The entropies in equation (11) are defined in terms of integrals over the prob-
ability densities associated with the images f(z) and m(x). However, in a typical
medical image registration problem, the probability densities are not directly ac-
cessible, and thus must be estimated from the image data. Parzen windowing,
described in [5] and used in [22], is a common technique for density estimation. In
this method, continuous density functions are constructed by a super-position of
kernel functions K (-) centered at the elements of a sample of intensities taken from
the image. The estimation of the probability density p(z) is thus given by

p(x) = P*(z) = Nis > K(z—2z), (12)
z; €S

where Ng is the number of spatial samples in S and K is an appropriately chosen
kernel function. The kernel function K must be smooth, symmetric, have zero
mean, and unit mass. Examples of suitable candidates for K include the Gaussian
density and the Cauchy density. In [22], Viola and Wells use a Gaussian density
function with standard deviation o to estimate the probability density functions.
The optimal value of ¢ depends on the particular images to be registered.

Upon estimating the probability densities using the Parzen windowing technique,
the entropy integral h(z) = — [ p(z) In(p(z)) dz must be evaluated, for example, by
using a sample mean:
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h(z)

1

1
N, > In(P*(z)), (13)
zZj€ER
where R is a second sample of intensities taken from the image. That is, two
separate intensity samples S and R are taken from the image. The first is used to
estimate the probability density, and the second is used to approximate the entropy.
The main advantage of the mutual information measure is that was shown to be
generally applicable for multi-modality registration, whereas intensity-based mea-
sures are typically not applicable for multimodality registration. Mutual informa-
tion registration has been successfully used for a number of complex applications.
Most notably, mutual information has been shown to be highly accurate for MRI-
CT registration; see, for example, [9], [15], and [21].

2.5. Non-parametric image registration. All of the image registration tech-
niques that we have discussed so far have been based on certain parameters. For
example, either the transformation ¢ can be expanded in terms of basis functions
that span a specified finite-dimensional space, or the registration is controlled by
a specified set of external features. Non-parametric techniques do not restrict the
transformation to a parameterizable set. Given two images, a fixed image f(x) and
a moving image m(z), we seek a transformation ¢ such that m(¢(z)) is similar to
f(x) in a certain sense. Upon defining a suitable distance measure D, the registra-
tion problem is then to minimize the distance between m(¢$(x)) and f(x). However,
a direct minimization is often not possible in the non-parametric case. The prob-
lem is ill-posed: small changes in the input data may lead to large changes in the
output. Additionally, the solution is not unique. Given these constraints, a stable
numerical implementation is often impossible. To circumvent these problems, a
regularizing, or smoothing, term S is introduced, and the registration problem be-
comes the minimization of the distance between m(¢(x)) and f(z) plus a smoothing
term S(¢). That is, the registration is based on a regularized minimization of the
distance between the images.

In the discussion of non-parametric image registration, the transformation ¢ :
R? — R? is split into the trivial identity part and the deformation or displacement
part w; i.e.,

o(z) =z — u(x). (14)

Upon decomposing ¢ in this way, we have m(¢(z)) = m(z — u(z)) = my(z).
Given a distance D and a smoother S, the elastic registration problem is then the
minimization of D(f(z), m,(x)) + aS(u), where o € R is a positive regularizing
parameter.

The choice of smoother S typically depends on the particular application. Ex-
amples of non-parametric image registration techniques include elastic registration
[3], fluid registration [2], and diffusion registration [6]. Elastic registration uses
linear elasticity theory to model the deformation of an elastic body. In this case,
the regularizing term S(u) is the linearized elastic potential of the displacement w.
In fluid registration, the regularization is based on the linearized elastic potential
of the time derivative of u. Finally, diffusion registration uses a regularization that
is based on spatial derivatives of the displacement.

REMARK. In this section, we presented a brief overview of the major image
registration techniques currently used in image registration. In practice, the best
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registration method for a given set of images will depend on the particular features
of the images themselves. However, numerous studies comparing the accuracy and
performance of different image registration techniques for various applications have
been presented. The most extensive of these is [24], which originally consisted of a
comparison of 16 methods but has since been substantially expanded.

3. Registration in the presence of noise. In this section, we study the effect of
noise on image registration, and we determine the approximate noise level at which
registration fails. This study is conducted on the brain proton density slice images
shown in Figure 1 below. The image on the right is the result of translating the
image on the left by 13 mm to the right in the X-direction and 17 mm downward
in the Y-direction. Let I denote the original image, and let T" denote the translated
image.

Image |: Brain Proton Density Slice Translated Image T

FIGURE 1. Original image I and translated image 7.

Initially, we will consider the registration problem in which one of the images
(here, the fixed image) is noisy. We will add increasing levels of noise to the image
I and register the non-noisy translated image 7" with the noisy images. Our goal
is to determine the approximate noise levels at which various image registration
techniques fail, and to develop an algorithm that will enable registration beyond
these levels. Since we know the exact transformation that brings T into spatial
alignment with I, we can effectively evaluate and compare the accuracy of vari-
ous registration techniques. We will demonstrate that our multiscale registration
technique enables accurate registration of the translated image T" with images that
contain significant levels of noise. Eventually, we will also apply our techniques to
the case in which both the fixed and the moving images contain high levels of noise.
Before we present these results, we discuss the notion of noise in some detail.

REMARK. In this paper we present the results only for registration experiments
using the images I and T shown in Figure 1. We have performed numerous ex-
periments using other images, and we obtained results similar to those presented in
this paper. For the sake of brevity, we limit the results presented in this paper to
the experiments using the images in Figure 1.

3.1. Noise. Digital images are often degraded by random noise. In imaging, the
term noise refers to random fluctuations in intensity values that occur during image
capture, transmission, or processing, and that may distort the information given by



MULTISCALE IMAGE REGISTRATION 399

the image. Image noise is not part of the ideal signal and may be caused by a wide
range of sources, such as detector sensitivity, environmental radiation, transmission
errors, discretization effects, etc. Noise is generally classified as either independent
noise or noise which is dependent on the image data.

Independent noise can often be described by an additive noise model, in which
the observed image f(x) is the sum of the true image s(x) and the noise n(x):

f(@) = s(z) +n(z). (15)
Within this framework of additive noise, the noise n(z) is commonly modeled by
Gaussian noise of mean m and variance v. A multiplicative noise model describes
noise that is dependent on the image data. This is often referred to as speckle noise:

f(x) = s(z) + s(z)n(x) = s(x)(1 + n(z)). (16)
In this case, n(x) is uniformly distributed random noise with mean m and variance
v. Impulse noise, or salt-and-pepper noise, is noise that resembles salt and pepper
granules randomly distributed over the image. Impulse noise is typically defined
by the following model. We let s(x) denote the actual image, and f(x) denote the
observed image. Then

f(2) = {s(x), W%th probab%l%ty 1-4, (17)

n(z), with probability 4,

where n(z) is an identically distributed, independent random process. With this
model, an arbitrary pixel z € Q C R?2 is affected by noise with probability d,
and not affected with probability 1 — 4. We will refer to d as the impulse noise
density, as adding impulse noise of density § to an image f(z) affects approximately
J - size(f) pixels. The random process n(z) is typically such that the corrupted
pixels are either set to the maximum value, have single bits flipped over, or are set
alternatively to zero or to the maximum value. This last case results in a salt-and-
pepper appearance. Note that unaffected pixels always remain unchanged.

In Figure 2, we add additive Gaussian noise of mean 0 and variance 0.2, multi-
plicative speckle noise of mean 0 and variance 0.2, and impulse noise of density 0.2
to the brain proton density slice image I.

Additive Multiplicative
Gaussian noise speckle noise Impulse noise

FIGURE 2. An illustration of the addition of various types of noise
to the image I.
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In this paper, we will study the problem of image registration in the presence of
high levels of impulse noise. We will determine the impulse noise density level at
which ordinary registration methods fail, and we will present a multiscale registra-
tion algorithm that enables accurate registration for noise levels higher than those
at which ordinary methods fail. To study the effect of varying noise densities on
the registration process, we add impulse noise of increasing densities § to the brain
proton density slice image I, and register the (non-noisy) translated image T with
the noisy images. Let I denote the image I with added impulse noise of density 4.
In Figure 3, we illustrate the noisy images I for increasing values of J.

6=0.10 0=0.30 0=0.50

FIGURE 3. An illustration of adding impulse noise of increasing
densities ¢ to the image I.

REMARK. Although in this paper we present the results of image registration ex-
periments using only impulse noise, we have also conducted numerous experiments
using other types of noise, including additive Gaussian noise and speckle noise. The
results obtained with all other types of noise are similar.

3.2. Registration results. For increasing noise densities J, we register 7" with
Is using various registration methods. Recall that the image T is the result of
translating the original image I 13 units in X and 17 units in Y, and that I is
the result of adding uniform impulse noise of density ¢ to the image I. Since T
is a rigid transformation of I, we will restrict the registration process to linear
transformations; i.e., we will consider optimal linear registrations. The optimal
transformation ¢ produced by the optimal linear registration process will consist of
two parameters, namely X- and Y-translation values. We will let ¢ x and ¢y denote
the X- and Y-translation parameters, respectively, of the optimal transformation
¢. For comparison purposes, we will perform the optimal linear registration using
the mean squares, normalized correlation, and mutual information metrics.

We use the following parameters for the registration algorithms. For the mean
squares and normalized correlation registration algorithms, we use the regular step
gradient descent optimizer. Due to the stochastic nature of the metric computation
in the mutual information algorithm, the regular step gradient descent optimizer
does not work well in the case of mutual information. Instead, we use the gradient
descent optimizer with a user-specified learning rate of 20.0. See [7] for a detailed
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TABLE 1. The results obtained upon registering the translated im-
age T with the noisy image I5, where ¢ is the impulse noise density;
¢x and ¢y denote the X- and Y-translation values of the optimal
transformation ¢ produced by the registration algorithm, and n is
the number of iterations until convergence. The actual translation
values are 13 units in X and 17 units in Y.

Mean Normalized Mutual
Squares Correlation Information
d ¢x ¢y n ¢x ¢y n ¢x ¢y n
0.00 12.99 17.00 18 13.01 17.00 18 12.75 17.03 200
0.10 12.99 17.01 28 12.99 17.01 20 12.83 16.88 200
0.20 13.03 16.98 17 13.04 16.98 19 12.98 16.64 200
0.30 12.97 17.03 28 13.02 17.02 11 13.02 17.02 200
0.40 18.89 7.16 15 8.06 1.30 13 11.08 9.72 200
0.50 2.16 7.06 19 9.09 218 8 9.72 T7.12 200
0.60 29.81 3.19 40 4.08 024 7 4.57 517 200
0.70 2.08 1.14 13 3.11 2.13 12 3.08 2.86 200

discussion of these parameters. Finally, we set the maximum number of iterations
for each algorithm to 200. As we shall see, mean squares and normalized correlation
registrations typically converge very quickly to the optimal value. Mutual infor-
mation, on the other hand, often does not actually reach the true optimal solution
but instead oscillates within one or two pixels of the optimal solution (generally
after 100-150 iterations). By reducing the learning rate, we can increase the likeli-
hood of convergence, but this increases the computation time significantly without
improving the accuracy of the solution.

For each of these three registration algorithms, and for each § we record the X-
and Y-translation parameters, denoted by ¢ x and ¢y, respectively, of the optimal
transformation ¢ produced by the registration process. We also record the number
of iterations n until convergence. The results are shown in Table 1. Recall that the
actual translation values are 13 units in X and 17 units in Y. We also record the
number of iterations until convergence, which we denote by n.

The results presented in Table 1 indicate that optimal linear registration in the
presence of impulse noise fails when the impulse noise density in the fixed image
reaches approximately 0.40, regardless of the metric used.

4. Denoising.

4.1. Denoising techniques. In this section, we discuss various denoising tech-
niques. Image denoising is a fundamental problem in image processing, and there
has been much research and progress on the subject. As our primary interest is not
denoising but the problem of image registration of noisy images, we do not focus on
the general problem of image denoising. Instead, we present a few of the most com-
mon and computationally simple denoising techniques. We will then apply these
techniques to one of our noisy images and study the effect of denoising on the image
registration techniques. In particular, in Section 3, we saw that ordinary optimal
linear registration of noisy images failed when the impulse noise density was greater
than 0.40. Also in this section, we shall determine whether or not denoising prior
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to registration enables successful registration of noisy images for which registration
failed previously.

Spatial filtering is the traditional approach to removing noise from images. Spa-
tial filters use the assumption that noise occupies the higher regions of the frequency
spectrum, and thus they attenuate high spatial frequencies. Local spatial filtering
is a process in which the value of a given pixel in the filtered image is computed
by applying some algorithm to the pixel values in a neighborhood of the given
pixel. Typical implementations of spatial filters include mean filtering, median fil-
tering, and Gaussian smoothing. Mean filtering computes the value of each output
pixel by computing the statistical mean of the neighborhood of the corresponding
input pixel. Thus, applying a mean filter to a noisy image reduces the amount
of variation in gray-level intensity between pixels. Although this filter is compu-
tationally easy to implement, it is sensitive to the presence of outliers. Median
filtering, which computes the value of each output pixel by computing the statis-
tical median of the neighborhood of the corresponding input pixel, is more robust
to the presence of outliers, and is thus commonly used for removing impulse noise
from images. Convolution with a Gaussian kernel is another commonly used spatial
filtering technique. See [23] for an overview of classical spatial filtering techniques.

In Figure 4, we illustrate the effect of applying a mean, median, and Gaussian
convolution filter to the noisy image Iy 7o, the brain proton density slice image with
impulse noise of density 0.70. As is indicated in Figure 4, spatial filters smooth the
data to remove noise but also blur edges.

Mean filter Median filter Gaussian filter

FIGURE 4. The results of applying mean, median, and Gaussian
filters to the brain proton density slice image with impulse noise
of density 0.70.

More advanced denoising techniques that remove noise more effectively while
preserving edges include wavelet-based methods [10], total variation methods [19],
and PDE-based anisotropic diffusion methods [13], to name a few. Total variation
denoising reduces the total variation of the image, and thus removes noise, textures,
and fine-scale details while preserving edges. In Figure 5, we illustrate the effect
of applying these denoising techniques to the noisy image Iy 7, the brain proton
density slice image with impulse noise of density 0.70.

4.2. Registration results after denoising. In this section, we register the trans-
lated image T with the denoised images illustrated in Figures 4 and 5. As in Section
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Total variation Anisotropic diffusion

FI1GURE 5. The results of applying the Osher-Rudin total variation

and the Perona-Malik anisotropic diffusion denoising algorithms to

the brain proton density slice image with impulse noise of density

0.70.

TABLE 2. The results obtained upon registering the translated im-

age T with the denoised images obtained upon applying median,

mean, and Gaussian convolution filters to the noisy image Iy 7.

¢x and ¢y are the X- and Y-translation values of the optimal

transformation ¢ produced by the registration algorithm, n is the

number of iterations until convergence. The actual translation val-

ues are 13 units in X and 17 units in Y.

Mean Normalized Mutual
Squares Correlation Information

Denoisin
Techniquge éx ¢y n ¢x ¢y n éx ¢y n
Mean 31.83 1.15 46 1688 111 29 539 530 200
Filtering
Median 1887 1.26 31 238 690 34 439 406 200
Filtering
Gaussian 1886 -0.76 31 219 025 11 738 7.37 200
Filtering
TOt(?l . 6.11 4.26 19 529 9.15 15 6.30 6.23 15
Variation
Anisotropic 210 1.13 11 400 6.22 10  10.62 14.77 200
Diffusion

3, we use mean squares, normalized correlation, and mutual information optimal
linear registration. For each registration method, we let ¢ denote the optimal trans-
formation produced by the registration algorithm, and we let ¢x and ¢y the X-
and Y-translation parameters of the optimal transformation ¢. We denote by n the
number of iterations of each registration algorithm until convergence. We record
the results in Table 2. The moving image in each case is the translated image T
recall that the actual translation values are 13 in X and 17 in Y.
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The results presented in Table 2 indicate that the application of some of the
classical as well as modern denoising techniques prior to registration does not
enable successful registration of the noisy image Iy79 with the translated image
T. Although the more advanced denoising techniques such as total variation and
anisotropic diffusion result in translation values that are closer to the actual values,
particularly when mutual information registration is used, we conclude from Table
2 that denoising prior to registration does not produce accurate registration results
for images that contain high levels of noise.

5. Multiscale decomposition. In this section, we present the multiscale image
representation using hierarchical (BV, L?) decompositions of [20]. The multiscale
decomposition will provide a hierarchical expansion of an image that separates the
essential features of the image (such as large shapes and edges) from the fine scales of
the image (such as details and noise). The decomposition is hierarchical in the sense
that it will produce a series of expansions of the image that resolve increasingly finer
scales, and hence will include increasing levels of detail. We will eventually apply
the multiscale decomposition algorithm to the problem of image registration in the
presence of noise, and will demonstrate the accuracy of the multiscale registration
technique for noisy images such as those that were considered in Sections 3 and 4.

We will use the following mathematical spaces in the decomposition algorithm.
The space of functions of bounded variation, BV, is defined by

BV = {1 | Wllav s= sup WG+ = SOl < -
We will also use the Sobolev space W~ with norm given by:
flz)g(x
by o= sup | [ £ g
g gl
where ||g|[yw11 = [|Vgl|L:.

5.1. The hierarchical decomposition. Define the J-functional J(f,A) as fol-
lows:

JUN = inf AllelEs + llullav, (18)

where A > 0 is a scaling parameter that separates the L? and BV terms. This
functional J(f,\) was introduced in the context of image processing by Rudin,
Osher, and Fatemi [19]. They suggested the following. Let [ux,v)] denote the
minimizer of J(f,\). The BV component, uy, captures the coarse features of the
image f, while the L? component, vy, captures the finer features of f such as
noise. This model is effective in denoising images while preserving edges, though it
requires prior knowledge of the noise scaling .

Tadmor, et al. propose in [20] an alternative point of view in which the mini-
mization of J(f, \) is interpreted as a decomposition f = uy-+wvy, where u) extracts
the edges of f and vy extracts the textures of f. This interpretation depends on the
scale )\, since texture at scale A consists of edges when viewed under a refined scale
(2%, for example). We refer to vy = f — uy as the residual of the decomposition.
Upon decomposing f = uy + vy, we proceed to decompose vy as follows:

Uy = U2y + V2),
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where

[uax, van] = arginf J(vy, 2X).
utv=vy

Thus, we obtain a two-scale representation of f given by f = uy + ug), where now
vax = f — (ux + ugy) is the residual. Next we decompose vyy and continue this
process, which results in the following hierarchical multiscale decomposition of f.
Starting with an initial scale A = Ay, we obtain an initial decomposition of the
image f:

f=1ug+vo, [ug,vo] = arginf J(f, Ao).
utv=f

‘We then refine this decomposition to obtain

. i1 .
Vj = Ujp1 + Vi1, (U1, 0541] = aiglnf J(vj, A2/, j=0,1,...
u ’U:'Uj

After k steps of this process, we have:

f=uwtvo=u+u+vi=u+u +us+ve=...=ug+u+...+ up + v,

which is a multiscale image decomposition f ~ ug+ui+...+ug, with a residual vy.
As k increases, the uj components resolve edges with increasing scales A\ = \g2F.

5.2. Implementation.

5.2.1. Initialization. As described in [20], the initial scale Ay should capture the
smallest oscillatory scale in f, given by

1 1

— < Clee < —. 19
o < Il < 5 (19)
However, in practice, we may not be able to determine the size of || f]|y-1., SO we
determine the initial choice of A\g experimentally. Following [20], for the applications

presented in this paper, we will use A\g = 0.01 and \; = X\¢27.

5.2.2. Numerical discretization. We follow the numerical algorithm of [20] for the
construction of our hierarchical decomposition. In each step, we use finite-difference
discretization of the Euler-Lagrange equations associated with the J(v;, A\j11) to
obtain the next term, u;41, in the decomposition of the image f. The Euler-
Lagrange equation associated with the minimization of the functional J(f, \) given
in equation (18) is

1 . Vuy
——d _
Y ”(m) &

with the Neumann boundary conditions:

ou
i —) (20)
P
where 0f) is the boundary of the domain € and n is the unit outward normal.
k
We thus obtain an expansion f ~ > u;, where the u; are constructed as ap-
j=0

proximate solutions of the recursive relation given by the following elliptic PDE:
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1. Vi1 Ly Vu
o d ) D gy (M 21
AR YV 1V(|Vuj+1|) o <V“J|) 2y

Note that J(f, \) contains a singularity when |Vuy| = 0. To remove this singu-
larity, we replace J(f,\) by the regularized functional

J(f,A) = ug}if {/\|v||2L2 + /Q Ve + |Vul? dx dy} : (22)

and at each step, we find the minimizer uy of J¢. The Euler-Lagrange equation for
the regularized J¢ functional is

1 . VUA
uy — —div| —=—== | = f € ,
A 2\ ( /e2 + |VU>\2> f

with Neumann boundary conditions.
To numerically implement the method, we cover the domain € with a grid (z; :=
th,y; := jh), and discretize the elliptic PDE of equation (21) as follows:.

1 1
= f Dot
it " Ve + (Diwui )2 + (Doyui ;)2 ’
1 1
+ = D+ Ul"'
2 \/62 + (Doxttij)? + (Dyyui ;) ! Jl
sy 1 Uit1,j — Uij
1,] \/62 D+muz j) + (DOyui’j)2
B Ui,j — Ui—1,5
\/62 + (D—zui3)? + (Doyui—1,5)?
1 Ui j+1 — Ui j
+ 5 2
\/6 DOmuz j) + (D+y7.lzi7j)

ui7j — ui)j_l (23)
V@ + (Doguig—1)? + (D_yui )2 |

where Dy, D_, and Dy denote the forward, backward, and centered divided dif-
ferences, respectively. To solve the discrete regularized Euler-Lagrange equations
(24), we use the Gauss-Siedel iterative method to obtain:
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+1
oo g L Uiy~ Ui
v “I 2h2 2 n \2 n \2
\/6 + (Dizuf;)? + (Doyui;)
1
B up Uy
VE H (D)2 + (Do, ;)2
1
+ L P~ U
2h2 2 n \2 n \2
V(Do )? + (Do)
1
\/62 + (D01“2j71)2 + (D—yu?,j)z

To satisfy the Neumann boundary conditions (20), we first reflect f outside {2
by adding grid lines on all sides of 2. As the initial condition, we set u?yj = fij
We iterate this numerical scheme for n = 0,1,... N until [|[u"> — u™><~1|| is less
than some preassigned value so that u?;” is an accurate approximation of the fixed
point steady solution uy.

Finally, we denote the final solution uy := {u;'*}; ;. To obtain the hierarchical
multiscale decomposition, we reiterate this process, each time updating f and A in
the following way:

fnew — fcurrent — U,

)\new — 2)\current' (25)

That is, at each step, we apply the J(feurrent —ux, 2A) minimization to the residual
feurrent — uy of the previous step. Taking A\; = X027, we obtain after k steps a
hierarchical multiscale decomposition f = uy, + ux, + ... + ux, + vy,, where we
write uy;, = uj. We call the u;, j = 1,2,...,k the components of f and the vy the
residuals.

ExamMpPLE 1. Decomposition of a noisy image. We apply the hierarchical
multiscale decomposition of [20] as described in Section 5 to the noisy image Iy 7o
in Figure 3, using the following parameters: m = 12 hierarchical steps, Ag = 0.01,
A= X2/, e = 0.001, n = 10, and h = 1. In Figures 6 and 7, we illustrate
the components uy; and the residuals vy; for this decomposition. Note that in
each hierarchical step, an additional amount of texture is seen in the components.
Further, the noise is not seen in the first few components, while most of the texture
is kept, and the noise only reappears as the refined scales reach the same scales as
the noise itself. Our goal is to use this multiscale decomposition to register the noisy
image Ig.79 with the translated image T'.

6. Multiscale registration. Consider again the noisy images I5 shown in Figure
3 with impulse noise of increasing densities . Recall that in Section 3, we demon-
strated that registration of the the translated image T with the noisy image Is
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FIGURE 6. Multiscale decomposition of the noisy image Iy 7o
shown in Figure 3.

failed when 6 > 0.40, regardless of the metric used in the optimal linear registra-
tion process. Moreover, registration using these classical methods failed even after
denoising the noisy image using various standard denoising techniques, as demon-
strated in Section 4. In this section, we present new methods for image registration
that allow for a successful registration of the translated image T" with the noisy
images I5 for values of the noise density J significantly greater than the levels at
which classical registration and registration after denoising fail. These registration
techniques will be based on the hierarchical multiscale decomposition described in
Section 5.

Consider two images A and B, and suppose that we want to register image
B with image A. Suppose that one or both of the images contains a significant
amount of noise. If only one of the images is noisy, we assume that it is image
A. We propose the following multiscale registration method. First, we apply the
multiscale hierarchical decomposition to both images. Let m denote the number
of hierarchical steps used for the multiscale decompositions. For ease of notation,
given an image f, we let

k
=0
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FIGURE 7. The residuals of the multiscale decomposition of the
noisy image Iy 7o shown in Figure 3.

denote the k*™ component of the image f, k = 0,1,...,m — 1, obtained as in
Section 5. Thus Cy(A) will denote the k" component of the image A, and Cy(B)
will denote the k" component of image B.

We will present two algorithms; in the first, we register image B with the com-
ponents of image A, and in the second, we register the components of image B with
the components of image A.

6.1. Algorithm I: One-node multiscale registration. In our first multiscale
registration algorithm, we register image B with the k' component of A, for k =
0,1,...,m — 1. This is illustrated by the schematic in Figure 8.

We refer to this algorithm as a one-node multiscale registration algorithm because
in each of the m registrations prescribed by the algorithm, the moving image is
always the image B. We only use the multiscale components of the fixed image A
for the one-node algorithm.

Let ¢ denote the optimal transformation produced by the registration algorithm
upon registering B with Cx(A), k =0,1,...,m—1. Recall that Cy(A) contains only
the coarsest scales of the image A, and as k increases, Ci(A) contains increasing
levels of detail (and hence, noise) of the image A. Thus, we expect that registration
of image B with Cj(A) should give an improvement compared to ordinary registra-
tion for the first few values of k. As k increases, however, we expect that eventually
the component Cy(A) will become too noisy to give successful registration.

Upon determining the transformations ¢, with a suitable registration algorithm
(e.g., an optimal linear registration), we have several options for defining the optimal
transformation ® that should bring the image B into spatial alignment with the
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Moving Image Transformation Fixed Image

Co(A)

C1(A)

b2
B Ca(A)

y

Cs(A)

Cm-1(4)

FIGURE 8. This schematic represents a one-node multiscale image
registration algorithm in which we register the moving image B
with the £*" component of the fixed image A, for k = 0,1,...,m—1,
where m is the number of hierarchical steps used for the multiscale
decompositions.

image A. The first option would be to take into account the registration parameters
corresponding to the coarse scales only, i.e., the first few values of k, for which we
expect a more accurate registration. Upon determining the number of registrations
that we wish to take into account, we could then estimate ® by averaging the
registration parameters corresponding to those coarse scale registrations. A second
option would be to define ® as a weighted average of the ¢x; i.e.,

1 m—1
P = — 2
m Z ak¢k7 ( 7)
k=0
where the weights aj are appropriately chosen non-negative real numbers such that
Ya = m. For example, we could perform a statistical analysis on the registration
parameters corresponding to the ¢;, and use the mean and standard deviation
(or the mean and standard deviation of the first several values) to determine the
weights ay.

6.2. Algorithm II: Multi-node multiscale registration. In our second mul-
tiscale registration algorithm, we register the k*" component of image B with the
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Moving Image Transformation Fixed Image
Po
Co(B) - Co(A)
1
Ci(B
1(B) - C1(4)
P2
C»(B) C2(A)
>
V3
Cs(B) > C3(A)
. .
. .
. .
Pm—1
Cm-1(B) Cm-1(A)

Y

FIGURE 9. This schematic represents a multi-node multiscale im-
age registration algorithm in which we register the k" component
of the moving image B with the & component of the fixed image
A, for k =0,1,...,m — 1, where m is the number of hierarchical
steps used for the multiscale decompositions.

k" component of image A, for k =0,1,2,...m — 1, as illustrated by the schematic
in Figure 9.

We refer to this algorithm as a multi-node multiscale registration algorithm because
in each of the m registrations prescribed by the algorithm, we consider both the
components of the fixed image A and the components of the moving image B.

Let 1)y, denote the optimal transformation produced by the registration algorithm
upon registering Cy(B) with C(A), k =0,1,...,m — 1. As before, we expect that
registration of Cy(B) with Cj(A) should give an improvement compared to ordinary
registration for the first few values of k. As k increases, however, we expect that
eventually the components Cy(A) and Cx(B) will become too noisy to register
successfully. Since this algorithm considers components of both images, we expect
that it will be particularly successful in the case in which both images are noisy.

As in the case of the one-node multiscale registration algorithm, we can define
the optimal transformation ¥ that should bring image B into spatial alignment
with image A either by taking into account only the first few registration results
corresponding to registration of the coarse scales, and averaging the registration pa-
rameters corresponding to these first few registrations, or by computing a weighted
average:
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TABLE 3. The registration results upon registering 7" with Iy 7o
using Algorithm I. Here, we use m = 12 hierarchical steps to de-
compose the noisy image, so we perform m = 12 registration sim-
ulations. The transformation parameters ¢ x and ¢y are the X-
and Y-translation parameters of the optimal transformation ¢ pro-
duced by the registration algorithm. The actual translation values
are 13 in X and 17 in Y. The moving image in all simulations is
the translated image T

Mean Normalized Mutual
Squares Correlation Information
Fixed Image ¢X (by n ¢X ¢y n ¢X (by n
Iy.70 4.57 517 200 208 114 7 4.08 024 7
Co(o.70) 12.65 16.36 200 3.08 1.11 12 3.11 0.17 9
C1(Io.70) 12.69 16.78 200 2.08 3.08 14 2.13 212 12
Ca(Io.70) 12.56 16.79 200 2.11 3.08 14 2.14 3.11 15
Cs(Io.70) 12.53 16.76 200 3.08 211 14 3.11 214 7
C41(Io.70) 12.48 16.76 200 24.88 1.16 36 18.86 1.18 30
Cs5(1o.70) 12.46 16.78 200 40.80 1.07 52 0.21 1.18 11
Cs(Io.70) 12.43 16.80 200 28.86 0.15 46 27.84 2.19 42
C7(Io.70) 12.43 16.79 200 -2.87 4.11 15 0.18 3.14 12
Cs(1o.70) 12.43 16.74 200 25.89 3.12 40 -1.84 4.12 14
Co(Io.70) 9.33 9.41 200 6.05 4.12 12 7.99 2.08 16
Cio(Io.70) 8.44 832 200 -3.92 8.12 21 4.09 3.15 16
C11({o.70) 6.96 6.46 200 8.97 6.13 13 3.65 1.17 27
1 m—1
= — bk'ﬁbka 28
- kz:% (28)

where the weights by are appropriately chosen non-negative real numbers such that
Zbk =m.

7. Examples of multiscale registration.

7.1. A noisy fixed image. In this section, we use the multiscale registration tech-
nique described in Section 6 to register the translated (non-noisy) image T with the
noisy image Iy 79. Recall that Ij 7o is the image obtained upon adding impulse noise
of density 0.70 to the brain proton density slice image I. As before, let Cy(Io.70) de-
note the k** component in the multiscale decomposition of I 7, for k = 0,1, ...m,
obtained as in Section 6. We perform the multiscale decomposition using m = 12
hierarchical steps, Ao = 0.01, and \; = Xo2/. In Table 3, we present the results
of m = 12 registration simulations, obtained upon registering T with Cy(1y.70),
k=0,1,...,11, using Algorithm I of Section 6.1. For each registration, we let ¢
denote the optimal transformation produced by the registration algorithm, and we
let ¢x and ¢y the X- and Y-translation parameters of the optimal transformation
¢. The moving image in each registration is the translated image T'. For reference,
we also include in the first line of Table 3 the parameters obtained using ordinary
registration.
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It is clear from the results presented in Table 3 that the results obtained us-
ing mean squares and normalized correlation methods are completely inaccurate.
Thus, the one-node multiscale algorithm did not produce meaningful results for
these metrics. For mutual information, however, the X and Y translation param-
eters are clustered around 12.5 units in X and 16.8 units in Y for £k = 0,1,...8,
but then are significantly different for the remaining values of k. We expected
that the multiscale registration results would be an accurate approximation of the
actual transformation ® for small values of &k, but then would deviate as k be-
came sufficiently large, because as k becomes large, increasing scales of detail (and
hence, noise) appear in the component Cy. Thus, even without knowing the actual
values of the X- and Y-translations, it makes sense to take into account only the
parameters corresponding to the first 9 registrations (k = 0,1,...8). Averaging
the translation parameters for the first 9 registrations, we obtain ® x = 12.52 and
®y = 16.73. Since the actual values are 13 in X and 17 in Y, we see that multi-
scale mutual information registration produced very accurate results in this case,
and indeed is a significant improvement compared to ordinary registration as well
as to classical and modern denoising followed by registration.

Next, we provide the results obtained with Algorithm II by registering the multi-
scale components of the translated image T with the multiscale components of the
noisy image Iy 7o. Let Ci(T) and Cx(Ip.70) denote the multiscale components of T
and I 70, respectively, obtained through the multiscale decomposition presented in
Section 5. As before, we use m = 12 hierarchical steps, A\g = 0.01, and \; = X2’ to
perform the decomposition. In Table 4, we present the results of m = 12 registra-
tion simulations, obtained upon registering Cy(T) with Ci(Ip.70), K =0,1,...,11.
For each registration, we let ¥ denote the optimal transformation produced by the
registration algorithm, and let ¥ x and 1y denote the X- and Y-translation param-
eters of the optimal transformation . For reference, we also include in the first
line of Table 4 the parameters obtained using ordinary registration.

To estimate the transform parameters Uy and Wy, we note that for mutual
information, the translation parameters 1, and 1, are clustered together for the
first 9 registrations, and for mean squares and normalized correlation, the values
are clustered together for the first 2 registrations. Thus for mutual information we
determine W by averaging the parameters corresponding to the first 9 registrations,
and for mean squares and normalized correlation, we average the first 2 values.
In Table 5, we present the X- and Y-translation values corresponding to these
averages.

REMARK.Since the actual translation values are 13 in X and 17 in'Y, we see
that the multinode multiscale registration of the translated image T with the noisy
image Iy.70 produces very accurate results for each of the three optimal linear regis-
tration metrics considered here (mean squares, normalized correlation, and mutual
information). The main difference between the results obtained with Algorithm I
and Algorithm 11 is the accurate registration of the coarse scales obtained with Al-
gorithm II.

7.2. Noisy fixed and moving images. In this section, we consider the registra-
tion problem in which both the fixed and moving images are noisy. Consider the
noisy images Iy.40 and T 49, where T, as before, is the result of translating I 13
units in X and 17 units in Y, and Ay denotes the image obtained by adding impulse
noise of density § to the image A. The noisy images are shown in Figure 10.
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TABLE 4. The registration results obtained with Algorithm II.
Here we register the k' multiscale component Cy(T') of the trans-
lated image 7' with the £*® multiscale component Cj (I 79) of the
noisy image Iy 79 obtained via the multiscale decomposition dis-
cussed in Section 5. Here, we use m = 12 hierarchical steps to
decompose the noisy image, so we perform m = 12 registration
simulations. The transformation parameters ¥ x and )y are the
X- and Y-translation parameters of the optimal transformation
1 produced by the registration algorithm. The actual translation
values are 13 in X and 17 in Y.

Mean Normalized Mutual

Squares Correlation Information

Mci‘zl;;egdlzrﬁfges éx Py dx Py bx Py
Ip7oand T 4.57 5.18 2.08 1.14 4.08 0.24
Co(lo.70) and Cy(T) 12.69 16.66 12.29 17.72 12.96  17.08
C1(Io.70) and C1(T) 12.67 16.87 13.70 17.75 12.99  17.67
Cy(Ip.70) and Co(T) 12.59 16.86 20.77 5.20 16.84 4.31
Cs(Iomo) and C5(T) 12,55 16.82 3.19 031 420  4.23
Cy(Io.70) and Cy(T) 12.52 16.83 2.20 2.24 26.74 5.18
Cs5(Io.70) and C5(T) 12.51 16.84 31.65 2.23 14.90 6.27
Cs(Io.70) and Cg(T) 12.49 16.87 30.69 6.16 19.87 4.29
C7(Io.70) and C7(T) 12.48 16.85 33.64 3.16 29.64 3.32
Cs(Iomo) and Cs(T) 12,53 16.71 2881  3.22 1.26  1.29
09(10,70) and CQ(T) 9.26 9.36 2.13 3.13 17.93 3.21

C10({o.70) and Cy
011(10.70) and Cy

= o

(T) 8.80 8.61 2.12 3.12 32.63 3.14
(T) 695 6.34 34.74 2.10 4.13 5.08

TABLE 5. The translation parameters ¥x and ¥y obtained by
averaging the parameters corresponding to the coarse scale reg-
istrations. The actual translation values are 13 in X and 17 in

Y.
Mean Normalized Mutual
Squares Correlation Information
5% 12.56 12.99 12.98
Uy 16.82 17.74 17.37

Before applying our multiscale registration algorithm, we attempt to register
To.40 With Ig40 using the three registration methods mean squares, normalized
correlation, and mutual information. The results shown in Table 6 indicate that
registration of the noisy images fails, regardless of the metric used in the optimal
linear registration algorithm.

Since ordinary registration of the noisy images fails, we register the images using
Algorithm II, the multi-node multiscale registration technique. First, we perform
the multiscale decomposition discussed in Section 5 to both noisy images, again us-
ing m = 12 hierarchical steps, initial scale \g = 0.01, and A\; = 27\g. Let Cy(I.40)
and Cy(Tp.40) denote the k™ component in the multiscale decomposition of Iy .4
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FicURE 10. The original image I and translated image T with
impulse noise of density é = 0.40

TABLE 6. The results of registering the noisy translated image
To.40 with the noisy image Iy 49, using three different metrics. The
actual translation values are 13 in X and 17 in Y.

Registration Method ox Py
Mean Squares 11.02 7.04
Normalized Correlation  3.05 0.99
Mutual Information 5.03 2.54

and Tp 40, respectively. Since both images are noisy, we register the k" component
Cr(Tb.40) with the k' component Cy(Iy.40). For each registration simulation, de-
note by 1 the optimal transformation produced by the registration algorithm, and
denote by ©¥x and ¥y the corresponding X- and Y-translation parameters of the
optimal transformation v. We present the results of this multiscale registration in
Table 7.

To estimate the transformation ¥, for mutual information we average the pa-
rameters corresponding to registration of the first 7 scales. For mean squares, we
average the results of the first 2 registrations, and for normalized correlation, we
average the registration results from the first 4 registrations. In Table 8, we present
the X- and Y-translation values ¥ x and Wy

Note that since the actual translation values are 13 in X and 17 in Y, our
multiscale registration technique provides accurate results in the case in which
both the fixed and moving images contain significant levels of noise.

REMARKS.

1. For the sake of brevity, we presented only the multiscale registration results
for registration of images that contain levels of noise greater than the level at
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TABLE 7. The results of registering Tp.40 with Ip40 using Algo-
rithm II. Here, we use m = 12 hierarchical steps to decompose the
noisy image, so we perform m = 12 registration simulations. The
actual translation values are 13 in X and 17 in Y.

Mean Normalized Mutual

Squares Correlation Information
e e x oy ex  or  éx  ov
Iy 40 To.40 5.03 2.54 11.02 7.04 3.05 0.99
Co(Ioao) Co(Thae) 13.06 1692  13.05 16.92  13.05 16.92
Ci(Iogo) Ci(Thae) 13.05 1693  13.02 1622  13.06 16.92
Co(lo.a0) Co2(Tpa0) 13.03 16.93 8.11 5.29 13.02  16.27
Cs(Ioao)  Cs(Thae) 13.02 16.94 540 12.19  13.02  16.25
Cullpao) Cu(Thao) 13.02 16.94 2.20  8.00 2.23  5.09
Cs(Ioao) Cs(Thao) 13.01 1693  26.76  1.21 117 7.00
Cs(Ioao) Co(Thao) 1299 1681  23.83  4.11 122 217
Cr(Ip.a0)  Cr(Tb.40) 7.05  6.08 0.20 3.15 0.20 4.15
Cs(Ipa0) Cs(Tpha0) 678  5.05 6.04  2.09 6.04  6.05
Co(Ios0) Co(Thao) 305 1.02 998 110 506 10.01
Crolloao) Cio(Touo) 1220 1401  -1.97 099  -3.93  3.04
C11(Ip.a0) Ci1(Tha0) 4.80 3.19 1.01 5.98 3.91 0.72

TABLE 8. The translation parameters Uy and ¥y for registration
of Ty.40 with Iy 49 obtained by averaging the translation parameters
of the coarse scale registrations. The actual translation values are
13in X and 17in Y.

Mean Normalized Mutual
Squares Correlation Information
5% 13.03 13.03 13.04
Uy 16.92 16.57 16.59

which ordinary registration methods fail. However, we also performed mul-
tiscale registration simulations for noise densities lower than those presented
here, and in all cases, the multiscale technique was either as accurate as or
more accurate than ordinary registration techniques.

2. The method of estimating the translation parameters in X and Y by averag-
ing the parameters corresponding to the coarse scale registrations is based on
determining the scales that should be taken into consideration. For the results
presented in this paper, as well as for all of the other simulations that we
studied, we found a drastic jump in the translation parameters such as that
between the eighth and ninth scales in the mutual information column of Table
4. In such cases, the natural choice is to average the parameters correspond-
ing to the coarse scales before the jump, and to exclude the remaining values;
indeed, in all cases considered for this study, we have found that estimating
the parameters in this way yields extremely accurate results. More generally,
we expect that for most problems of this type, there should be a noticeable jump
in the multiscale registration parameters, thus enabling a determination of the



MULTISCALE IMAGE REGISTRATION 417

coarse scales that should be averaged. This jump occurs because once a certain
level of detail, and hence noise, appears in the scales, the registration process
fails. More specifically, the optimization of the registration metric does not
produce meaningful results if enough noise is present, and the registration pa-
rameters that result differ significantly from those that result from registration
of images in which less noise is present.

8. Summary. While there are many existing medical image registration tech-
niques, common approaches are shown to fail to give accurate results when one
or more of the images to be registered contains high levels of noise. Further, if the
noise level is significantly high, image registration can fail even when a denoising
algorithm is applied to the noisy images before registration. We have presented
an image registration technique based on the hierarchical multiscale decomposition
of [20] of the images to be registered. The multiscale decomposition of an image
results in a hierarchical representation that separates the coarse and fine scales of
the image. Upon obtaining the decomposition of one or both of the images to be
registered, we register the components of the moving image with the components of
the fixed image. Since the coarse scale components of an image contain the essen-
tial features and shapes of the image, registration of the coarse scale components
of the moving image with the coarse scale components of the fixed image provides
an accurate estimate of the actual transformation that brings the moving image
into spatial alignment with the fixed image. Using images in which the precise
transformation that maps one to the other is known, we have shown that the mul-
tiscale approach is indeed accurate for levels of noise much higher than the noise
levels at which ordinary optimal linear registration and denoising prior to ordinary
registration methods fail; moreover, for all levels of noise, the multiscale technique
either matches or outperforms ordinary registration techniques. Finally, we hope to
extend these techniques to other image registration problems in which ordinary reg-
istration techniques are not successful due to degradation or other factors present
in the images to be registered.
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Many image registration algorithms rely on the use of homologous control points on the two input
image sets to be registered. In reality, the interactive identification of the control points on both
images is tedious, difficult, and often a source of error. We propose a two-step algorithm to auto-
matically identify homologous regions that are used as a priori information during the image
registration procedure. First, a number of small control volumes having distinct anatomical features
are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find
their correspondences in the reference image through user interaction, in the proposed method, each
of the control regions is mapped to the corresponding part of the reference image by using an
automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual
information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal
mapping. For rigid registration, the transformation parameters of the system are obtained by aver-
aging that derived from the individual control volumes. In our deformable calculation, the mapped
control volumes are treated as the nodes or control points with known positions on the two images.
If the number of control volumes is not enough to cover the whole image to be registered, addi-
tional nodes are placed on the model image and then located on the reference image in a manner
similar to the conventional BSpline deformable calculation. For deformable registration, the estab-
lished correspondence by the auto-mapped control volumes provides valuable guidance for the
registration calculation and greatly reduces the dimensionality of the problem. The performance of
the two-step registrations was applied to three rigid registration cases (two PET-CT registrations
and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a
lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a
large number of initial transformation parameters. An accuracy of ~2 mm was achieved for both
deformable and rigid registration. The proposed image registration method greatly reduces the
complexity involved in the determination of homologous control points and allows us to minimize
the subjectivity and uncertainty associated with the current manual interactive approach. Patient
studies have indicated that the two-step registration technique is fast, reliable, and provides a
valuable tool to facilitate both rigid and nonrigid image registrations. © 2006 American Associa-
tion of Physicists in Medicine. [DOI: 10.1118/1.2184440]

Key words: image registration, image fusion, deformable model, spline, IGRT

I. INTRODUCTION

Imaging is at the foundation of many clinical interventional
procedures and development of an effective image registra-
tion technique has been one of the most important research
areas in medical applications of imaging technology. Gener-
ally speaking, registration is to align two imaging data sets in
a common coordinate space by transforming the higher reso-
lution data set (the “model”) while keeping the other one (the
“reference”) fixed. Depending on the mathematical nature of
the transformation, image registration is divided into rigid
and deformable registrations. In rigid transformations, it is
assumed that the geometry of the object is identical in the
two input images and no distortion occurs in the image ac-
quisition process. When working in the “world coordinate”
in which the lengths in both images are measured in the same
scale, a rigid transformation consists of six degrees of free-
dom: three displacement parameters and three rotational pa-
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rameters. Deformable registration, on the other hand, is more
complicated and entails the modeling of voxel-dependent
distortion in addition to the translation and rotation.'™"
Clinically, the need for a robust image registration algorithm
to compare/fuse images representing the same structures im-
aged under different conditions or on different modalities is
ever increasing because of the extensive use of multi-
modality imaging and the emergence of new imaging tech-
niques and methods.

Computer-based rigid image registration has gained wide-
spread popularity in the last decade and is used in routine
clinical practice. In this approach, the matching of the two
input images is formulated into an optimization problem and
the best registration of the two images is obtained by itera-
tively comparing various possible matches until no better
registration can be found. The search for the optimal match
of the two input images is usually gauged by a ranking func-

© 2006 Am. Assoc. Phys. Med. 1165
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tion constructed based on some physical considerations. De-
pending on the nature of the input images, the formulation of
the problem can be highly complicated and the truly optimal
solution may not be readily attainable. To facilitate the com-
puter decision-making process, image preprocessing or user
interaction may be required, especially when dealing with a
deformable image registration. Along this line, a commonly
used strategy is to locate several homologous anatomic land-
mark pairs on the two input images, as it is generally true
that inclusion of prior system knowledge often leads to a
better matching. In order to accurately identify the control
points on both images, a prerequisite is that the user must
have a detailed understanding of the patient anatomy and the
characteristics of the two modalities. The point pairs are usu-
ally obtained interactively with the user repetitively explor-
ing the input image sets and each time trying to locate a
point in both of them. Due to the 3D nature, the process is
rather tedious and difficult to perform. Inaccuracy and sub-
jectivity exist in the resulting match due to the user depen-
dence in selecting the control points.

The purpose of this work is to develop a general method
to facilitate the selection of control points for both rigid and
deformable image registrations. Under an assumption that
sufficient common features exist in the two input studies in
most practical registration problems, the registration of two
images in our approach proceeds in two steps. First, a num-
ber of small control regions having distinct anatomical fea-
tures are identified on the model image in a more or less
arbitrary fashion. Instead of attempting to find the correspon-
dences of the regions in the reference image through the
judgment of the user, in the proposed method, each of the
control regions is mapped to the corresponding part of the
reference image by using an automated image registration
algorithm. The mapping of a control region is generally ef-
ficient and robust provided that sufficient information is in-
cluded in the volume. After the mapping, a conventional au-
tomated image registration algorithm utilizing the
predetermined control points can be employed to complete
the remaining image registration process. This new way of
image registration eliminates the need for the manual place-
ment of the homologous control points and allows us to reg-
ister the two images accurately and efficiently.

Il. METHODS AND MATERIALS

A. Software platform

All calculations are implemented using an open-source
software toolkit named the Insight Toolkit (ITK)," which
consists of template-based codes for a large number of image
visualization, segmentation, and registration classes. The
programs contained in ITK are easily extendable, making it
an ideal platform for the development of image registration
methods. Concise and clear descriptions on the use of the
available subroutines are provided in the ITK manual.

Medical Physics, Vol. 33, No. 4, April 2006

B. Selection of control regions on the model image

Image registration is a highly nontrivial optimization
problem and suboptimal or even nonoptimal solution may
result if it is done without a priori knowledge of the system.
A method for enhancing the success rate of the calculation is
to provide partial guidance to the optimization program by
introducing a number of homologous control points identi-
fied on the model and reference images at different spatial
locations. In general, the point pair should represent the same
anatomic location in the two data sets. While the method is
inherently efficient because it poses strong constraints on the
solution search process, a challenge here is that the spatial
arrangements of the reference and model points must be
brought into optimal agreement. This is often performed by a
skilled user and there exists considerable interperson varia-
tion in the identification of the control point pairs.

Different from the previous approaches, we replace each
control point on the model image by a small volume, coined
as control volume. A control volume is placed on a location
where deformation is negligible (e.g., in or nearby a bony
structure). It is preferable that sufficient imaging feature/
information is contained within the volume so that its coun-
terpart in the reference image can be easily and uniquely
identified by computer. The underlying assumption here is
that the regions on a model image are generally not equiva-
lent and some regions can be more reliably mapped onto the
reference image than others. The use of a “rigid” control
region that possesses rich internal intensity pattern makes the
mapping of the region from model image to reference image
simple and unique. The determination of the size of the con-
trol region is generally a balance of a few factors. If the
volume is too small, there would be not enough structurally
unique features in the region to warrant an accurate mapping
of the region. On the other hand, it may be difficult to
specify a large control volume that meets the general selec-
tion criteria of the control volume when there is tissue defor-
mation. Typically, the volume is spherical or cubic shaped
with a dimension of 1-2 cm in the case of intramodality
registration, but, depending on the application, other shaped
volume or dimension should also be acceptable.

C. Mapping of control regions from the model image
to reference image

In Fig. 1 we show the flow charts of the new image reg-
istration scheme for rigid and deformable registrations. The
input to the software is the images to be registered: a model
image and a reference image, described by their intensity
distributions 1,(x) and I4(x), respectively. A virtue of the
new approach is that the control regions need to be identified
only on the model image in a fairly arbitrary fashion. The
correspondences of these regions on the reference image are
determined through the use of an automatic image registra-
tion algorithm. In a sense, the determination of control re-
gions here is a process of registration within a registration.
For intramodality registration, we use the normalized cross
correlation (NCC) of control regions between the model
points and the corresponding reference points,
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FiG. 1. Flow chart of the proposed calculation proce-
dure for rigid (a) and deformable registration (b). The
control volumes are selected by the user only on the
model image. A rigid registration algorithm automati-
cally maps the selected control volumes to their corre-
sponding locations on the reference image.

v A4

Is the number of control volumes sufficient to cover the whole image for spline calculation?

l No Yes

Add more control points on the model image and
optimize the metric function with respect to the
displacements of the points to find their location on
the reference image optimizing the registration

l ‘,

BSpline calculation to relate all voxels in the model and reference images

25:1 1,(x)I5(Tx;)
f=- ,
V2L P, BTx)

as the criterion for assessing the goodness of the mapping of
the control regions. In Eq. (1), i and j are the voxel indices
within a control region « in the model image, I,(x;) is the
intensity of the voxel at x; on the model image «, and 74(Tx;)
is the intensity of the reference image 8 where the voxel x; is
mapped. We note that other types of metrics should be
equally applicable to deal with the problem here. For inter-
modality registration such as CT and MRI, the commonly
used mutual information metric can be used as the matching
criterion of the control regions.

The above mapping directly uses the value of all pixels
within a control volume as the information feature with the
assumptions that both data sets show the control volume
similarly and that the control volume pair is related by a rigid
transformation. In intramodality registration, an idealized
situation is that the intensity of each voxel in a control region
in the model image differs from its corresponding reference
pixel by a factor. In practice, the two data sets may be af-
fected by noise, sampling, and clinical or experimental situ-

(1)
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ation. The mapping of a control volume is considered opti-
mal if the above NCC function is minimal or mutual
information is maximal. Numerous optimization algorithms
can be employed to minimize/maximize the matching crite-
ria. In our calculation, the control volumes are mapped se-
quentially and independently. For a chosen control region, an
iterative optimization algorithm is used to update the six
transformation parameters until no further improvement can
be achieved. The iterative calculation is outlined in the next
section. After one volume pair is finished, the calculation
moves to the next control region and the iterative calculation
is repeated.

D. Optimization of the NCC function

The NCC given in Eq. (1) or the mutual information met-
ric for a given control volume is a function of its transla-
tional and rotational parameters. For each control volume,
the optimization of the function with respect to these param-
eters is done by using the L-BFGS algorithm.13 The details
of this algorithm have been presented”’m’15 and will not be
repeated here. During the mapping of a control volume, the
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iterative calculation based on the LBFGS algorithm contin-
ues until a preset maximum number of iterations (typically,
100 iterations) is reached.

E. Rigid and BSpline deformable registration with
incorporation of the mapped control volume
information

For rigid registration, a single control volume is, in prin-
ciple, sufficient to derive the translational and rotational pa-
rameters of the system. To be robust, we typically select two
to three control volumes and the final registration parameters
are determined by averaging that derived from the individual
control volumes. The use of control volume for rigid image
registration is especially useful when there are artifacts in
one or both input images.

For deformable registration, we usually select five or
more control regions for each plane and the translation and
rotation of each volume are generally different. The obtained
homologous control volume pairs play a similar role as the
nodes in the BSpline model. After the nodal set is deter-
mined, spline deformable registration can be used to relate
the remaining part of the images. The detail of the calcula-
tion is described as follows.

Mathematically, the task of a deformable image registra-
tion is to find the transformation matrix, 7(x), that maps an
arbitrary point x on the model image « to the corresponding
point X’ on the reference image S (or vice versa) in such a
way that the best possible match, as measured by the regis-
tration metric, is achieved. In BSpline deformable registra-
tion calculation, the image is generally divided into a grid
with N3 cells. The corner of a lattice cell is referred to as a
node and is indexed by i (i=1,2,...,N3). The spacing be-
tween the nodes are usually 2—5 cm. The displacement of a
node i is specified by a vector x; and the displacement vec-
tors, {x;}, of a collection of nodes characterize the tissue
deformation. The displacement at a location x on the image
is deduced by fitting a polynomial expressed using the basis
spline (BSpline)16 to the grid nodes x;. In reality, the nodes
do not have to form a lattice on the model image. In our
BSpline deformable calculation, the mapped control volumes
are treated as the spline control points. Upon the completion
of the mapping of the control volumes, the positions of these
nodes on both input images are known. If the number of
control volumes is not enough to cover the whole image
volume, additional control points are placed on the model
image and the locations of the added nodes are determined
by optimizing the registration metric function with respect to
their displacements, as is done in conventional spline de-
formable calculation for the whole nodal set. Otherwise, no
additional nodes are required and one can proceed directly to
the spline interpolationl’7‘17 to relate the voxels on the two
input images, as depicted in Fig. 1(b). In this calculation, the
existing homologous control volume pairs provides valuable
a priori information of the registration and greatly reduces
the dimensionality of the problem of finding an adequate set
of control points.
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To recapitulate, a deformable registration calculation in
the proposed approach is constituted of two steps: mapping
of the control volumes and registration of the image data.
The first step is rigid registration in nature and yields the
translational and rotational parameters for each control vol-
ume. To complete the second step, a strategy of incorporating
the mapped control volumes needs to be in place. In our
calculation, the coefficients of the transformation matrix 7(x)
are the node displacements and need to be calculated only
for those added nodal points, because the locations of the
auto-mapped control volumes are already known with high
confidence.

F. Search space characteristics and convergence
analysis

Image registration is to establish a voxel-to-voxel map-
ping between the two input entities. The change of the metric
function with the relative displacement of the two inputs
provides a useful evaluation of the search space. The value
of the metric function reaches its minimum or maximum
when the two images are aligned and increases/decreases as
they moved away from each other. A desirable metric func-
tion should exhibit a single distinct global minimum/
maximum and vary smoothly as the two images are slide
away gradually. For the rigid registration, we plot the metric
as a function of the relative displacement of the two mirror
control volumes. For comparison, we also plot the metric
function for conventional registration, in which the final
transformation parameters are obtained by iteratively adjust-
ing the relative positions of the two images. For nonrigid
registration, the behavior of each control volume is different
and the metric functions for some selected control volumes
are plotted when the volumes are displaced away from their
ideally mapped locations.

In general, the optimization result should be independent
of the initial values of the system variables. The convergence
behavior of the proposed method is studied for both rigid and
nonrigid image registrations by starting the registration cal-
culation with a number of initial transformation parameters
chosen randomly. For each calculation, we plot the metric
value as a function of the iteration step. The results are com-
pared with that obtained using conventional approach when
treating each input image as an entity. In addition, the shifts
toward the optimal match in the x, y, and z directions result-
ing from each of the calculations are plotted for the two-step
registration and the conventional registration.

A checkerboard display tool, where images to be com-
pared are merged together in a chesslike pattern, is used to
assess the difference between the two images before and af-
ter registration. At the transition zone it is possible to mea-
sure the mismatch between anatomical structures in the two
images. Ideally, when the two images are perfectly aligned,
no difference should be visible in the checkerboard of the
two images.
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G. Case studies

The utility of the proposed two-step registration method is
demonstrated by studying a few rigid registrations and a non-
rigid registration case. The first two are cancer patients with
tumors in the abdomen regions, who have undergone both
CT and ['®F] fluorodeoxythymidine (FLT)-PET scans. Here
FLT is a marker for thymidine kinase activity, representing
one of the potentially more selective tracers that have been
under intense investigations.18 A side feature of FLT-PET is
that bony structures appear clearly because of the high up-
take of the bone matrix, which makes the registration of PET
and other anatomic imaging modalities simple. The tech-
nique described above is used to fuse the CT and FLT-PET
images and the results are compared with that obtained using
conventional approach without relying on the use of control
volumes. For the first case we use three cubic volumes with
the side length of 7 cm, and the second case 5X 10
X 10 cm’.
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FiG. 2. Sagittal, coronal, and axial views of the FLT-
PET images (first row) and CT images (second row).
The checkerboard of the CT and FLT-PET images after
registration is shown in the third row and the left panel
of the fourth row. The right panel of the fourth row
shows a stereotactic view of the matched PET and CT
images after registration.

The next case consists of the registration of head CT and
MRI images. Although the head is commonly believed to
have no deformation, in practice, subtle differences may ex-
ist between images acquired using different modalities or
under different conditions, which may adversely affect the
registration. For example, the patient studied here uses an
immobilization mask in the CT scan but not in the MRI.
Additionally, this patient has a tumor in his left eye, which
makes the MRI appear differently from a regular situation.
Moreover, CT artifacts exist in the mandible region due to
the denture, which does not have much impact on the MRI
data. These factors complicate the registration calculation.

The input to the deformable image registration study is
the CT images acquired at the expiration and inspiration
phases using a 4D CT protocol.19 A set of control volumes is
selected on the exhale image [Fig. 9(c)] and a successive
rigid registration is carried out to find their locations in the
inhale image. These homologous control volumes pairs then
serve as the nodes for the subsequent spline deformable cal-
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culation to match voxels on the exhale image with that of the
inhale image for the purpose of 4D treatment planrling.zo’21

lll. RESULTS

A. Study 1: Rigid registration of CT and FLT-PET
images

The input CT and FLT-PET images used for the first case
in this study are shown in the first and second rows of Fig. 2.
The control volumes relative to patient geometry are de-
picted on the right of the fourth row of Fig. 2 as red wire
frames. To visually evaluate the registration results, in the
third row of Fig. 2 we show a checkerboard comparison of
the PET and CT images after registration. The sagittal check-
erboard image of the PET and CT is shown in the left of the
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fourth row of Fig. 2. The images are registered accurately,
with no geometric mismatch visible in the transition zone. A
3D view of the registration is presented on the right of the
fourth row of Fig. 2, where an excellent coincidence is ob-
served between the bony structures revealed in the CT
(white) and the PET images (orange). In both 3D rendering
and checkerboard display, the bladder is bright in the PET
image, but barely visible in the CT images. The feature in-
herent to a certain type of images but not others is problem-
atic in multimodality image registration since it “disturbs”
the mathematical correspondence between the two images.
Another commonly seen example of this is the registration of
CT images containing metal artifacts with MRI data (see
next section), in which no artifacts present. Control volume-
based registration permits us to exclude the undesirable re-
gions based on a priori knowledge and provides an effective
way to find the truly optimal solution in this situation.

In Fig. 3 we compare the NCC metric space when the
whole image is used with that when control volumes are
used. The surface plot in Fig. 3 represents the NCC function
values when the two input images [Fig. 3(a)] or two corre-
sponding control volumes [Fig. 3(b)] placed in the lumbar
region are shifted away from each other. The function values
are color-coded from red, representing suboptimal matching,
to blue, representing the optimal registration sought after. In
the former situation, it is seen that the metric function is not
smooth and multiple local minima exist. Aside from the fact
that the PET image is generally noisy, the high-intensity vox-
els in the bladder (caused by the rapid excretion of FLT
through the urinary system) that do not have a correspon-
dence in the CT image also influence the behavior of the
metric function in the former case. A single minimum in the
control volume-based registration is, on the other hand,
clearly visible and the search space is very smooth. More-
over, the NCC value at the minimum in this case is 0.22,
which is two orders of magnitude deeper than that of the
conventional registration. The improvement in the functional
behavior of the metric makes the image registration calcula-
tion much more efficient. This is also supported by the fol-
lowing analysis.

To examine the algorithm’s ability to find the correct
shifts to the best match, we assigned a known displacement
to the two input images and studied the registration process
by starting the iterative optimization from different initial
transformation parameters. In Fig. 4(a) we show the NCC as
a function of iteration step for 50 randomly assigned initial
trial transformation parameters. While the trajectory for each
optimization calculation is different, they all converge to the
same NCC value in the control volume-based calculations.
The convergence of the calculation is also evident from Fig.
4(b), where it is shown that, for a given mismatch of the two
input control volumes, all 50 calculations with different ini-
tial parameters lead to the same shift values, (x,y,z)
=(-1.8,3.3,5.3), where the coordinates are in mm. This is,
however, not the case for the conventional approach based
on the information contained in the whole image entity. As
seen from Fig. 4(c), the NCC converges to different values
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when different initial conditions are used. Furthermore, the
shifts [Fig. 4(d)] resulted from the approach fluctuate from
calculation to calculation. In this situation, the average shift
of the 50 runs in the x, y, and z directions are found to be
(=2.1, 0.85, 9.9). The variation range of the shifts in the
control volume-based calculations are all within 0.2, 0.5, and
0.4 mm in the x, y, and z directions. The fluctuation in the
conventional approach is, however, much greater: 15.8, 6.2,
and 21.0 mm, respectively. In most cases, the results came
out of the conventional approach represent, at best, subopti-
mal solutions. The misregistration is the z direction is par-
ticularly large, presumably due to the high intensity bladder
in PET, which has no correspondence in CT.

The input CT and FLT-PET images for the second case
are shown in the first and second rows of Fig. 5, along with
a checkerboard display of the PET and CT images after reg-
istration (the third row). Once again, no geometric mismatch
is visible in the transition zone. A 3D view of the registration
is also presented in Fig. 5, where an excellent coincidence is
observed between the bony structures revealed in the CT
(white) and PET images (orange). In both 3D rendering and
checkerboard display, the bladder and the liver are bright in
the PET image, but not on the CT images. The NCC metric
function and the convergence behavior of the registration
calculation are similar to the previous case, as illustrated in
Figs. 3 and 4. The control volume-based calculation yielded
the correct transformation parameters, (x,y,z)=(0,0,0), in
all 100 calculations with different initial parameters, whereas
the conventional approach based on the information con-
tained in the whole image entity was problematic and failed
to give the optimal solution. Indeed, for the 100 calculations
starting with different initial conditions, the variation range
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Registration Event

of the shifts in the control volume-based calculations were
within 0.1, 0.5, and 0.7 mm in the x, y, and z directions,
consistent with that resulting from matching the DICOM co-
ordinates of the PET and CT images. To illustrate the ability
of the algorithm in finding the optimal mapping, in Fig. 6 we
show 5 (out of the 100) independent registrations starting
from different initial mismatches with inclusion of rotational
degrees of freedom. Because the patient was scanned using a
hybrid PET/CT scanner, the DICOM coordinate match of the
two sets of images can be regarded as a “gold standard” of
registration, and the above agreement indicates that the con-
trol volume-based method is accurate in dealing with clinical
image registration. The fluctuation in the conventional calcu-
lation was, however, much greater: 11.0, 75.2, and 65.0 mm,
respectively. The results coming out of the conventional ap-
proach are clinically unacceptable.

In general, PET images are noisy and have little anatomic
information to yield descent registration with CT images.
Most, if not all, image registration algorithms are problem-
atic when applied to the registration of PET and CT images
because there is simply not enough common information be-
tween the two datasets (which makes the software PET-CT
registration an extremely ill-posed problem). When dealing
with general FDG-PET and CT registration, there is no ex-
ception for the proposed method because it relies on the
common information between the two images to reliably
map the control volumes. However, in a special case when
the FLT tracer is used for PET imaging, the patient’s bony
structures have high FLT uptake and show up on the PET
images and it is possible to use image registration algorithm
to register the PET and CT images. For pelvic FLT-PET im-
aging, however, the bladder shows up as a high-intensity
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region because of the accumulation of FLT in bladder, which
has no correspondence in the CT images. The control
volume-based registration affords an effective way for us to
deal with the issue.

B. Study 2: Rigid registration of CT and MRI images
for a brain case

In Fig. 7 we compare the control volume-based and con-
ventional MI-based registration of CT and MRI data at four
different slice locations for a brain case. In general, a MI
metric is preferable for multi-modality image registration
such as CT-MRI registration. Three cubic control volumes
are placed in the model image. The control volume-based
registration method outperforms the conventional approach
in both computational speed and the quality of the registra-
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FI1G. 5. Screenshots of sagittal, coro-
nal, and axial views of the FLT-PET
images (first row) and CT images (sec-
ond row). The checkerboard of the CT
and FLT-PET images after registration
is shown in the third row. The fourth
row shows a stereotactic view of the
matched PET and CT images after
registration.

tion. Indeed, the computing time for the two different tech-
niques to find their “optimal” solutions is reduced by almost
an order of magnitude in the control volume-based calcula-
tion. In the conventional registration, artifacts caused by the
mask, tumor in the eye, and the denture modify the metric
function and lead to unrealistic solutions. In Fig. 7, it is seen
that the whole CT set is dragged down relative to its ex-
pected location. The misregistration is evident especially in
the second row of Fig. 7 where the tumor visualized in the
MRI has no correspondence in the CT image. This mismatch
is eliminated in the control-volume based calculation, since
only artifact-free volumes are considered in the metric cal-
culation.

Starting from an initial spatial association of the two input
images, we have performed 50 independent calculations,
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each with different initial trial transformation parameters.
Similar to the PET-CT registration, the control volume-based
algorithm yields almost identical shift values in the x, y, and
z directions for all 50 runs. Interestingly, the average shifts
for the 50 independent calculations in the conventional reg-
istration are fairly close to that of the control volume-based
calculation: (6.0 mm, 44.7 mm, 82.7 mm) for the control
volume-based versus (6.3 mm, 44.6 mm, 83.7 mm) for the
conventional calculation. For the conventional approach,
however, the final transformation parameters vary from test
to test and do not converge to the same values. The variation
range in the control volume-based calculation are all within
1.9, 3.0, and 2.8 mm in the x, y, and z directions, whereas the
fluctuations in the conventional approach are much greater:
10.5, 6.7, and 13.6 mm, in the three directions. As seen from
Fig. 8(d), the misregistrations for most individual runs in the
x and z directions are particularly serious.

In addition, we have carried out quantitative evaluations
of how registration results depend on the size and placement
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of control volumes for the brain CT-MRI registration. Three
different sized control volumes were studied. For each size,
the volume was placed at 20 randomly selected artifact-free
locations and the registration parameters were then recorded.
The results are summarized in Fig. 9. It is seen that as the
control volume increases the fluctuation from one control
volume placement to another decreases dramatically. A mil-
limeter order of accuracy is achievable with a reasonable
sized control volume. We wish to emphasize here that the MI
metric used for CT-MRI registration is known to be statisti-
cally noisy. For intramodality registration such as CT-CT or
CT-cone beam CT, our experience indicated that a control
volume of 1-2 ¢cm® would result in a similar statistic as the
data shown in the third column of Fig. 9.

C. Study 3: Deformable registration of exhale and
inhale CT images for a thorax patient

The proposed method is applicable to both rigid and non-
rigid image registration problems. The inputs to be registered
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FIG. 7. Comparison of the newly proposed control volume-based (left column) and conventional whole image-based algorithms (right column) for rigid image
registration. In conventional registration, the metric tries to accommodate all the voxels, which becomes less adequate in the presence of image artifacts or
other noises. The control volume-based calculation eliminates the influence of imaging artifacts and produces better registration.

in this example are CT images acquired at expiration and
inspiration [Figs. 10(a) and 10(b)]. Five control volumes are
selected on the model image [Fig. 10(c)] and they are then
mapped independently to their corresponding locations in the
reference image [Fig. 10(d)].

Similar to the convergence analysis presented in the first
example, in Fig. 11 we plot the NCC metric for three of the
five control volumes when they are shifted away from their
ideal match positions. To better understand the system, we
have chosen two different sized control volumes: 20 mm
(upper row) and 40 mm (lower row). In both situations, the
metric space is smooth and has a very pronounced ridge.
Obviously, this behavior is resulted from the fact that the
intensity variation in the selected control volume is predomi-
nantly in the direction perpendicular to the boundary of the

CV of 25x25x50 mm

lung. When comparing the metric function for different sized
control volumes, we note that the search space characteristics
do not change significantly. For the size of 20 mm, the peaks
and valleys of the search space are more pronounced be-
cause, as the number of pixels reduces, a small mismatch
would lead to a large variation in the metric function. As the
size of the control volume increases, the details of the func-
tion are “evened out” by the large number of voxels. In both
situations, the positions of the minimum are found to be at
(x,y,2)=(-5.5,-11.3,3.4), (-1.8, —=12.0, 3.3), and (-3.8,
2.6, 0.6) for the three control volumes, respectively, where
the coordinates are in millimeters. In practice, determining
the size of a control volume is a matter of tradeoff between a
few factors, such as the accuracy, sensitivity against a small
mismatch of the control volume, and calculation speed.
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FiG. 8. Convergence analyses of a rigid brain CT-MRI registration using the control volume-based and whole image-based algorithms. In the former case, all
50 calculations with different initial transformation parameters converge to the same shift values in the x, y, and z directions, labeled by triangles, squares, and
circular dots, respectively. For the latter case, the fluctuation in the final shift values are much larger.
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After the mapping of the selected control volumes, a
warping using the spline model is used to register the re-
maining part of the image with the control volumes serving
as the control points. To have enough control points to war-
rant a robust spline calculation, we added one control point
inside the region encompassed by the points. Because the
added point is in a deformable region, it is less justifiable to
use the auto-mapping procedure described above to find its
mirror point on the reference image. Following the step out-
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FiG. 9. Dependence of registration on
the placement of the control volume
for three different sized volumes. For
each size, the shifts resulting from 20
random placements of the control vol-
ume are shown.

lined in Fig. 1(b), we used a B Spline-like algorithm to op-
timally locate its mapping with the known nodal points
#1—#5 as constraints. The mapped point is shown in Fig.
10(d) by a circle. The final result of the deformable registra-
tion is shown in Fig. 10(d). The model image is represented
as semi-transparent background in Fig. 10(c). The selected
rectangular control volumes are shown in Fig. 10(c) as over-
lays on the background image, with the image in each con-
trol volume cropped from the reference image to assess the

FiG. 10. Axial slices of the model (a)
and reference (b) images for the de-
formable registration study. Rectangu-
lar control volumes, #1 to #5, are
placed in the model image and their
mappings are shown on the reference
image. The anatomy in the regions af-
fected by the respiration does not
match initially (c). After the control
volume-based deformable registration,
the anatomy matches very well, as
confirmed by the overlay image (d).
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difference between the two input images. After registration,
no difference between the mapped model image and the ref-
erence image is observable [Fig. 10(d)].

The results obtained with the control volume-based
method are compared with that obtained using a “brute-
force” BSpline formalism.”> In Fig. 12(a) we show the
checkerboard display of the two input images as given in
Figs. 10(a) and 10(b). Before registration, deformations up to
1 cm in the two phases are clearly observable in the check-
erboard transition zone, as marked by red arrows. Both con-
trol volume-based and the BSpline models [Fig. 12(b)] are
able to register the two images. The mapped inhale images
from the two different approaches are displayed in Fig. 12(b)
using a checkerboard tool. The difference between the two
mapped images is found to be less than 2 mm in any region.
The control volume-based registration took only a few min-
utes to complete the calculation process, whereas one—two
hours are required by the conventional BSpline technique to
find the solution because it was needed for computer to op-
timize the metric function with respect to a large number of
nodal variables.

The convergence behavior of the deformable registration
is assessed in a similar fashion as described previously. For a
pair of control volumes with intentionally introduced starting
mismatch, we repeated the registration calculation 100 times
with randomly assigned initial transformation parameters.
The resultant transformation parameters of the first three
control volume pairs for the 100 independent registration
calculations are plotted in Fig. 13. For the first control vol-
ume, the shifts in x, y, and z directions are found to be (=5.5,
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FiG. 11. Metric function for the first
three control volumes for two different
control volume sizes (20 mm for up-
per row and 40 mm for the lower
row). In both cases, the search spaces
are smooth, with a very pronounced
ridge. The search space characteristics

,5.:(, and the location of the global minima
L™ do not depend significantly on the con-
Ll " ;

L] trol volume size.

—11.3, 3.4). The transformation parameters in the three di-
rections resulted from the calculations are all within the
range of 0.9, 1.3, and 1.5 mm, respectively. Similar conver-
gence is achieved for the other control volumes. The varia-
tion ranges for the second and third regions in the directions,
for example, are (1.4, 1.9, 1.3) and (1.1, 1.6, 1.5) in millime-
ters, respectively.

IV. DISCUSSION

With the recent advancements in image-guided radiation
therapy (IGRT),” multi-modality imaging becomes increas-
ingly important. Full realization of the potential of IGRT and
highly conformal IMRT would be impossible without a ro-
bust and efficient image registration technique. In general,
image registration has two important aspects: formulation of
the problem and optimization of the transformation param-
eters required to match the two input images. In this work we
proposed a general two-step registration technique, in which
homologous pairs of control volumes are obtained using an
auto-mapping algorithm and the pairs are then used as the
a priori knowledge of the system to facilitate the registration
process. In particular, we present our experience with the
selection of model parameters, optimization algorithm, and
the validation of the technique. The development of the pro-
posed technique was motivated by an intuitive observation
that, in image registration, the reliability of information in an
image is generally spatially heterogeneous and some regions
in the model image can be more reliably mapped to the ref-
erence image than others. In other words, there are at least
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FIG. 12. Checkerboard comparison of the model and reference images before (a) and after (b) control volume-based deformable registration. Displacement up
to 1 cm is visible before registration, as marked by the arrows in (a). The control volume-based algorithm yielded the same registration as that of the
conventional BSpline calculation, but with a significantly reduced computational time. A checkerboard comparison of the mapped model images from the two

algorithms is shown in (c).
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for the x (triangles), y (squares), and z (circular dots) directions.

two types of regions in a model image: regions whose cor-
respondence in the reference image are easily identifiable
and regions whose mapping to the reference image is less
obvious for a variety of practical reasons, such as tissue de-
formation, breathing movement, lack of distinct image fea-
tures, image artifacts, or inherent difference in the imaging
modality. Mapping of the two types of regions should be
treated differently, rather than equally as implemented in cur-
rent image registration algorithms. The use of control vol-
umes placed on the reliable regions permits us to eliminate
the uncertainty and/or disturbance arising from the less reli-
able regions, thus improving the performance and fidelity of
the image registration calculation.

A control volume is generally placed in a region where
the anatomical correspondence between the model and refer-
ence images can be easily realized by a quick visual judg-
ment. In the case of rigid registration, the mapping of K (K
=3) control volumes yields K+1 sets of transformation pa-
rameters, in which K from individual control volume and one
from the coordinates of the center of mass of all the control
volumes. Each set of transformation parameters include three
translational and three rotational parameters. The first K sets
of transformation parameters tend to be regional, whereas the
last one global. In our calculation, the final registration pa-
rameters are derived by averaging the K+1 sets of transfor-
mation parameters. Obviously, more sophisticated estimation
based on the K+1 sets of transformation data is possible. In
particular, some consistency check between the K+1 sets of
data can be imposed to ensure that the parameters derived
from the mapping of the individual control volumes are all
within a certain tolerance. This should be able to alert the
user if an affine transformation is needed to better describe
the transformation data. The approach is superior over the
existing registration technique based on the auto-matching of
the two whole image sets because it is not influenced by the
local disturbance from imaging artifacts. In reality, differ-
ence in image features due to the use of different acquisition
protocols may constitute “noise’ to the registration algorithm
and lead to inaccurate or unrealistic registration. Using con-
trol volumes provides an effective way to avoid the distur-
bance and allows us to fully utilize the features that are
known with high confidence to enhance the fidelity of the

Medical Physics, Vol. 33, No. 4, April 2006

registration. The two-step registration technique has the ad-
vantage of the landmark-based registration without having to
go through the hassle of interactively selecting a homologous
control point pairs. The proposed technique also eliminates
the subjectivity often associated with the landmark-based
registration and offers operator independence and reproduc-
ibility. In reality, as noted by West et al.. a careful visual
inspection of the results obtained from any automatic regis-
trations is crucial in a clinical setting to ensure that the reg-
istration found by a computer is clinically reasonable.

For deformable registration, the benefit of the two-step
registration is even more significant. In addition to the in-
creased robustness and confidence level, the technique
greatly speeds up the calculation process. In conventional
BSpline method, for example, the mapping of the nodes or
the transformation of the nodes from the model image to the
reference image is accomplished by a searching algorithm,
which treats the transformation parameters of the nodes as
interrelated system variables and hence necessitates an itera-
tive examination of a huge number of trial parameters under
the guidance of the registration metric. The amount of com-
putation is proportional to O(N?), where N is the number of
the nodes. In the proposed two-step registration, the selected
control volumes can be regarded as spline control points. The
determination of most, if not all, nodes is done indepen-
dently, which essentially reduces the calculation into an
O(N) problem. In reality, the number of nodes chosen by
independent mapping may not be enough to cover the whole
patient volume to yield a reliable deformation field every-
where inside a patient. In this situation, additional nodes may
be introduced by using the conventional BSpline method
with the positions of the added nodes determined collectively
(the control volume method-mapped nodes serve as con-
straints in the modified BSpline method). The modified or
hybrid BSpline registration method, in which one first maps
a fraction of nodes located on the reliable regions through
the control volume mapping and then proceeds with the stan-
dard BSpline calculation for the determination of remaining
nodes, also reduces the dimensionality of the deformable im-
age registration problem. This not only significantly speeds
up the calculation but also improves the convergence behav-
ior of the registration. The reduction in computational time
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may have practical implication as the radiation therapy is
moving toward more sophisticated image-guided patient lo-
calization and dose delivery and verification.”?

Our study has also shown that the use of control volumes
can greatly simplify the optimization calculation incurred in
the image registration problem. Over the years, powerful but
computationally intensive algorithms, which are capable of
statistically escaping from local minima, such as simulated
annealing or genetic algorithms, have often been used to at-
tack the optimization problem. Even with these stochastic
algorithms, finding the true solution of the problem can still
be challenging because of the wide variety of possible pixel
intensities within an organ and the complex behavior of the
metric function. This has been clearly demonstrated in the
examples presented above. The distinct feature of the control
volume smoothens the metric function space and makes it
simple for the search algorithm to converge to the global
solution.

V. CONCLUSIONS

In conventional techniques the information contained in
the model and reference images is employed as input entity
without “filtering” or “prioritization.” As thus, any artifact is
treated as part of the input information and adversely affects
the final registration result. We have proposed a novel
method for auto-selection of the control volumes and de-
scribed a two-step technique for both rigid and deformable
image registrations. Instead of relying on the interactive se-
lection of homologous control point pairs on both model and
reference images, the user needs only to identify some con-
trol volumes on the model image in a somewhat arbitrary
fashion. The approach has two major advantages: (i) It al-
lows us to incorporate a priori knowledge into the image
registration process to avoid/reduce potential registration er-
rors caused by image artifacts. (2) It improves the computa-
tional efficiency because the control volume involves fewer
voxels. The method was applied to both rigid and nonrigid
image registration problems and our results indicated that the
registration is reliable and provides a valuable tool for intra-
or intermodality image registration. The increased robustness
and confidence in the registration and the improved conver-
gence behavior of the calculation are the important features
of the new technique. Compared to the manual rigid regis-
tration, this method eliminates the nuisance of the control
point pair selection and removes a potential source of error
in registration. Compared to the automated method, the ap-
proach is more intuitive and robust, especially in the pres-
ence of image artifacts. Thus the method should find useful
applications in radiation oncology and other image-guided
intervention procedures.
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Purpose: To develop a method for deriving the phase-binned four-dimensional computed tomography (4D CT)
image sets through interpolation of the images acquired at some known phases.

Methods and Materials: Four-dimensional computed tomography data sets for 3 patients were acquired. For
each patient, the correlation between inhale and exhale phases was studied and quantified using a BSpline
deformable model. Images at an arbitrary phase were deduced by an interpolation of the deformation coeffi-
cients. The accuracy of the proposed scheme was assessed by comparing marker trajectories and by checker-
board/difference display of the interpolated and acquired images.

Results: The images at intermediate phases could be derived by an interpolation of the deformation field. An
analysis of marker movements indicated that 3 mm accuracy is achievable by the interpolation. The subtraction
of image analysis indicated a similar level of success. The proposed technique was useful also for automatically
mapping the organ contours in a known phase to other phases, and for designing patient-specific margins in the
presence of respiratory motion. Finally, the technique led to a 90% reduction in the acquired data, because in
the BSpline model, a lattice of only a few thousand values is sufficient to describe a CT data set of 25 million
pixels.

Conclusions: Organ deformation can be well modeled by using a BSpline model. The proposed technique may
offer useful means for radiation dose reduction, binning artifacts removal, and disk storage improvement in 4D
imaging. © 2006 Elsevier Inc.

Four-dimensional computed tomography, Deformable registration, Image-guided radiotherapy, Delineation,

Respiratory motion.

INTRODUCTION

Respiratory motion degrades anatomic position reproduc-
ibility during imaging (1-10), distorts the shapes of the
tumor target, displaces the organs, and causes errors during
radiation delivery (11-15). In the presence of breathing
motion, tumors and sensitive structures in the thorax and
abdomen can move as much as 2-3 cm, posing a significant
challenge for radiation therapy planning and delivery. Until
recently, tumor motion has been handled primarily by using
respiratory-gating or breath-hold technique (16). A more
advanced and potentially more beneficial approach is four-
dimensional computed tomography (4D CT), which adopts
techniques developed for cardiac CT imaging and allows
one to acquire image data at specified phases over several
respiratory cycles and then combines the data into phase-
binned images. Vedam et al. (9), Low et al. (17), and

Rietzel et al. (18) have refined the imaging techniques
developed for phase binning based on cardiac motion and
applied them to the problem of respiratory motion. The
signals used to stamp the time point of the image data are
either from a respiration monitor (RPM; Varian Medical
Systems, Palo Alto, CA) (9) or spirometry-based tidal vol-
ume measurement (17). By these methods, thoracic 4D CT
images accounting for respiratory motion have been suc-
cessfully acquired using single-slice scanners (8, 9) and
multislice 4D CT scans (17, 19, 20). Also, 4D cone beam
CT scans have been acquired using a benchtop system (21)
and on-board cone beam CT (22, 23).

Although the 4D CT provides a powerful tool to study
respiratory motion, a hurdle in realizing all the potential
gains is the need to acquire images for all breathing phases.
In the above-mentioned methods, the data acquisition is
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“brute force” in nature, and 10-20 sets of phase-resolved
3D CT images are needed. In addition to greatly increasing
the workload of the CT scanner, the radiation dose to the
patient becomes a major concern (24). The resultant data are
typically comprised of 1,500-3,000 images occupying sev-
eral hundred megabytes (MB) of disk space. Additionally,
the approaches may lead to artifacts if the correlation be-
tween RPM spirometer and scanner (17) is not accurate.
A 4D CT can be either prospective or retrospective. In the
former case, the scanner collects images at only one of the
breathing phases of the patient instead of scanning contin-
uously. Thus, the system acquires a series of contiguous
images at appropriate predetermined phases and creates a
single volumetric image corresponding to a specific phase.
The retrospective 4D CT scan results in multiple image sets,
corresponding to different breathing phases of the patient. It
consists of three relatively orthogonal processes (9, 17, 18,
24): recording of respiratory signal(s), acquisition of time-
dependent CT projection data, and construction of a 4D
image from these data. The question we ask in this research
is that, given a few sets of phased 3D CT (for example, 3D
CT images obtained at inhale and exhale points), is it
possible to deduce the intermediate phases by warping or
“interpolating” the images with a deformable registration
model? If successful, the method can greatly reduce the
radiation dose to the patient while maintaining the benefits
of 4D CT. As a byproduct, the contour information outlined
for one phase can be automatically transformed to the other
phases. A major task in this endeavor is the determination of
patient-specific organ deformations occurring between in-
hale and exhale phases. Several relevant image registration
techniques have been reported in the literature (25-38). A
deformable procedure based on the finite element model,
where images are described as blocks of elastic materials on
which forces apply, was proposed by Bharath et al. (25) and
Brock et al. (26). However, the values of the elasticity and
density constant for various tissues are not readily available
and have to be found by a trial and error procedure. A fluid
flow registration was applied in radiation therapy to auto-
matically warp contours delineated in one phase into next
phases (27). Recently, a simpler technique based on spline
interpolation was proposed (28). This model uses only a
lattice of nodes overlaid on the image, where deformation at
any location in the image is deduced by spline interpolation
of the closest node coefficients (29). In reality, the spline
coefficients can come also from a set of user-defined control
points, as was done by Fei et al. (28) in a study of warping
and rigid registration of magnetic resonance volumes. The
simplicity and robustness of the free-form deformation
(BSplines) defined on discrete nodes make it useful for
clinical applications (30, 31). This method was applied also
to directly register prostate CT and MRI/MRSI and was
validated by using a series of phantom measurements (32,
33). Rohlfing et al. (34) and Kaus ef al. (35) used a BSpline-
based registration to study liver deformation, and an accu-
racy of 3 mm was achieved. Berlinger er al. (36) and
Schweikard et al. (37) obtained synthetic digitally recon-
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structed radiographs at different breathing phases using the
same approach. Coselmon et al. (39) used a similar tech-
nique to study the accuracy of mutual information—based
CT registration of the lung at exhale and inhale respiratory
states.

In the following text, we present a general BSpline model
for deriving the images at the intermediate phases by start-
ing from two or three image sets at some distinct phase
points such as inhale/exhale phases. The performance of the
algorithm is assessed by monitoring the displacements of
implanted or surface markers. The general reference drawn
from this study is that it may not be necessary to acquire the
CT images at all phases to obtain the detailed 4D picture of
a patient. The information at a few distinct phases is suffi-
cient, because the behavior of the system at the intermediate
phases can be reasonably predicted by using a deformable
image registration model. Although the focus of this study
is to deduce the images at the intermediate phases, the
technique developed here can be generalized also for auto-
segmentation of the organs at all phases by starting from the
contours at a given phase point. The tool can be employed
also to analyze the geometric displacements of various
organs for the determination of the minimal target margin in
presence of respiratory motion.

METHODS AND MATERIALS

Image acquisition

The 4D CT images of the first patient were acquired by using a
GE Light Speed QX/I scanner (GE Medical Systems, Milwaukee,
WI). Ten phase bins were set for the 4D study, and 110 images
with a 3.75-mm slice thickness were acquired for each phase. The
recorded exposure time was 800 s. The 10 breathing phases re-
corded contained over 402 MB of data in DICOM image format.
The patient had three fiducial markers implanted in liver, kidney,
and vertebral body.

Two additional cases (a female and male torso) were acquired
using a GE Discovery QX/I CT scanner. In each case, 10 phases,
each consisting of 90 images with 2.5-mm slice thinness, were
acquired. The size of the 4D scans was 402 and 502 MB, respec-
tively. A single marker was placed on the patient’s abdomen or
torso to track the displacement. The image acquisition time was
500 s, and exposure time was 750 s.

The study was approved by the Institutional Review Board, and
all participants gave written informed consent. For each patient,
the 10 bins of the 4D CT data set spanned over the whole breathing
cycle and were indexed from CTO to CT90, with CTO correspond-
ing to the start point of the expiration and CT40 the full inspiration
point. Image sets from CT10 to CT30 represent the patient during
the inspiration, whereas CT50 to CT80 represent expiration.

We selected CTO and CT40 as the input to the image interpo-
lation algorithm with the intent of deriving the images CT10,
CT20, and CT30. The synthetic images deduced by the registration
algorithm are termed “interpolated” images. The effort was fo-
cused on the inspiration process, but the same calculation can be
similarly done for other phase points. To assess the accuracy of the
image warping, the interpolated images were compared quantita-
tively with the actual CT10, CT20, and CT30 images acquired
during the 4D CT scanning.
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Software and hardware platform

The image warping software was implemented using two related
open-source software toolkits named ITK (40) and VTK (41). ITK
consists of template-based code for a large number of image
registration algorithms and was used in this work for the image
registration study. VTK consists of tools for 3D visualization and
contouring and was used to determine the marker positions, extract
and interpolate surfaces, and compute distances between corre-
sponding surfaces. For convenience, in the following text we outline
the methods used in our calculation with attention paid to the issues
specific to CT image registration. All calculations were done on a
standard PC computer with a Windows XP operating system and
a Pentium 4 Processor at 1.6 GHZ, 256 MB of RAM. The DICOM
protocol was used for image data communication and transfer. The
VTK and ITK have a DICOM filter configured to read image files
in the DICOM format.

Coregistration of images at known phases

There are two problems that need to be solved to derive the
images at all intermediate phases from sets of 3D images acquired
at a few known phase points. First, the known image sets must be
registered using a deformable registration model. An interpolation
can then be performed to obtain the images at the phases falling
between the known phases (see sections below). The interpolated
images find their phase tag in the respiratory cycle through the
phase monitoring curve obtained using external means such as an
RPM or spirometry device. The overall process of the calculation
is depicted in Fig. 1.

Image coregistration is to map a floating image to a fixed or
target image by using a mathematical model. The process is shown
in the top part of Fig. 1. The input to the registration software is the

Step 1: Registration of images at two known phases

Fixed image Floating image
(CTO) (CT40)

Image Registration
Y

—J‘ Resample l—pl Metric ‘

F &
[ Transtorm ] opii |

v
Deformation matrix derived from
images at known phases

Step 2: Deduce image at arbitrary phase by linear interpolation

Linear interpolation

of matrix coefficients

> for CT10, CT 20, r
CT30 ‘

Deformation matrix
between CTO - CT40

CT0-20, CTO-CT30

Deformation matrix
between CT0-CT10,

Image CTO Apply the - Drive image CT10,
deformation matrix CT20, and CT30
CT0-CT10, CTO-
CT20, CTO-CT30
respectively

Fig. 1. Flow chart of the image interpolation process. First, a
deformable image registration procedure deduces patient-specific
displacements between the inhale and exhale phases. The displace-
ments are subsequently used to create interpolated images at
intermediary phases.

images to be registered: a fixed image and a floating image,
described by their intensity distributions /,(x) and /,(x), respec-
tively. In our calculation, the fixed image was CTO, and the
floating image was CT40. The resulting transformation describes
the 3D deformation field describing the patient anatomy change
from CTO (starting inspiration) to CT40 (ending inspiration).

For convenience, the image is divided into a grid with N3 cells.
The corner of a lattice cell is referred to as a node and is indexed
byi (i =1, 2,...N3). The displacement of a node, i, is specified
by a vector, x;, and the displacement vectors, {x;}, of a collection
of nodes characterize the tissue deformation. The displacement at
a location, x, on the image is deduced by fitting a polynomial
expressed using the basis spline (BSpline) (42, 43) to the grid
nodes x;. Unlike other spline models, the BSplines are locally
controlled. That is, the displacement of an interpolation point is
influenced only by that of the closest grid points, and changing a
lattice node affects the transformation only regionally, making it
efficient in describing local deformations.

Mathematically, the task of image registration is to find the
transformation matrix, 7(x), that maps an arbitrary point, x, on the
fixed image to the corresponding point, x’, on the floating image
(or vice versa) so that the best possible match, as measured by the
registration metric, is achieved. As shown in the top part of Fig. 1,
the image registration proceeds in an iterative fashion. The matrix
coefficients of 7(x) are the node displacements and are adjusted
iteratively to minimize the normalized cross correlation (NCC)
between the two images, defined as follows (Eq. 1):

2} L,x) I,(Tx)

f=- l >
A/ 2 106) 2 T(Tx)
i=1 j=1

where i and j are the node indices on the fixed image, I(x;) is the
intensity of the node at x; on the fixed image a, and I,(TX,) is the
intensity of the image b at where the node x; is mapped.

Optimization of the NCC function with respect to the displace-
ments of the nodes, {x;}, yields the transformation coefficients 7(x)
that map the points of image a to image b. Because the two images
do not necessarily have the same size, an interpolation may be
needed to compute intensity at a mapped point, x = T(x)x. To
facilitate the optimization, it is preferable that both the deformable
model and the metric are differentiable (30). This condition is
satisfied for the system that we are dealing with, as demonstrated
in a previous mathematical study (44).

It was found by previous researchers (30, 31, 45) that a lattice
with spacing of <40 mm is needed to model liver deformations.
For all cases, we used a lattice of 15 nodes for each dimension,
corresponding to a spacing of approximately 30 mm. Because
three variables are associated with each node, this setup leads to a
problem of 10,125 variables, requiring the use of efficient opti-
mizers to find the minimum of the NCC metric.

To optimize the system, we used the limited memory BFGS
algorithm (L-BFGS) (46), which is known for its superior perform-
ance in dealing with high-dimensionality problems. Starting from
a positive definitive approximation of the inverse Hessian H,, at x,,,
L-BFGS derives the optimization variables by iteratively searching
through the solution space. At an iteration, k, the calculation
proceeds as follows:

(1)
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1. Determine the descent direction p, = — H,Vf(x,).

2. Line search with a step size o = arg min f(x; + ap,), where
a = (0 is the step size defined in thé L-BFGS software package.
Update x,,, = x, + oy

4. Compute H,, , with the updated H,.

b

At each iteration, a backtracking line search is used in L-BFGS
(46) to determine the step size of movement to reach the minimum
of f along the ray x, + ap,. For convergence, a has to be chosen
such that a sufficient decrease criterion is satisfied, which depends
on the local gradient and function value and is specified in L-
BFGS by the Wolfe conditions (46).

During an image registration process, the above iterative calcu-
lation based on L-BFGS algorithm continues until the following
stopping criterion is fulfilled:

”Vf(xk)HZ

max(L, [l ?
with & = 107¢ in this study, or a preset maximum number of
iterations (typically, 50 iterations) is reached. In reality, tracking
the value of registration metric during the iterative calculation also
provides useful information and was used to assess the conver-
gence of the optimization algorithm.

Performance of image coregistration

Image coregistration is to relate the two input images: the fixed
and the floating images (see Fig. 1). Ideally, the mapped floating
image and the fixed image should be identical after the registration.
To evaluate the performance of the BSpline algorithm, we used the
popular checkerboard display tool, where images to be compared
are merged together in a chess-like pattern. At the transition zone
of the squares, difference in the two images can be easily visual-
ized and evaluated. If two images are similar, no differences
should be observed in the checkerboard tool. An analysis of the
subtraction image of the two registered images was also carried out
to evaluate the closeness of the two images. Histograms charac-
terizing the fractional voxels for a range of the Hounsfield number
(HU) differences were presented before and after deformable im-
age registration.

Image interpolation based on the deformable field derived
from the images at known phases

Synthetic CT images were obtained by warping CTO with the
given deformation field defined by the BSpline lattice coefficients.
In our calculation, the range between CTO and CT40 was divided
into 30 incremental steps. The deformation field for each step was
obtained by interpolating the transformation matrix derived from
the image coregistration between CTO and CT40 (see the previous
section for the calculation details). In general, the interpolated
images lack the phase information. A phase stamp can be imposed
on the interpolated images by correlating the location of the
external marker(s) on the images with the RPM signal character-
izing the patient’s respiratory motion.

Assessment of the interpolated images

The accuracy of the interpolated images at the intermediate
phases was evaluated in three ways. First, we compared the posi-
tions of the implanted and surface markers in the interpolated
images with those in the known 4D images at the corresponding
phases. The trajectories of the markers during the respiration
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process should ideally coincide with their positions in the known
4D CT images. The trajectories of the markers were computed by
warping coordinates observed in CTO with the deformation field
obtained at each interpolation step. The locations of the markers in
these images were measured using the display tools available in
VTK.

The next level of tests involved tracking the surfaces of ana-
tomic structures. The involved organs were delineated in both the
interpolated and the known 4D CT images. We term them the
complementary surfaces. For each point on one surface, a scalar
value representing the distance to its complementary surface was
assigned. Color-coded visualization of the distance permits direct
assessment of the regions. In addition, the checkerboard display
and subtraction image tools were also employed to evaluate the
difference between the two sets of images. An analysis of the
subtraction image of the interpolated and the actual images was
carried out to evaluate the closeness of the two images. Histograms
characterizing the fractional voxels for a variety of HU differences
were presented for all 3 patients.

Segmentation of organ contours in 4D CT

The model was also used to map the contours delineated in one
phase to another phase, as was previously done by other investi-
gators using a fluid flow method (27). Although both algorithms
can successfully find the deformation field between the inhale and
exhale images, turbulence may occur during evolution of a fluid-
based model, and thus a successive application of the fluid flow
algorithm is needed between each pair of images. This procedure
is simplified by the usage of the BSpline model, because the
deformation field for the intermediary phases is deduced by a
direct interpolation. Starting from a mesh of the contour at CTO,
the warping of the contours was implemented by modifying coordi-
nates of each point according to the deformation field derived by the
BSpline method. The vertices were unaltered during the process.

RESULTS

Convergence analysis

The convergence behavior of the registration was ana-
lyzed by monitoring the value of the NCC as a function of
the iteration step for three different numbers of nodes: 5, 10,
and 15. The results are presented in Fig. 2. In all cases,
convergence was achieved in less than 50 iterations. The
initial values of the metric are relatively good (—0.985),
because only voxel intensities near the organ boundaries are
affected by the respiration. Indeed, the affected voxels (the
affected voxels are the voxels whose HU units are changed
during the breathing cycle) represented only a small percent
of the total number of voxels. It is remarkable that the
algorithm was sensitive enough to detect and correct these
small deviations.

The convergence analysis is useful for the determination
of optimal algorithm parameters, most notably the number of
nodes. In practice, the value of this parameter is a result of
tradeoff between the computational speed and the accuracy.
A loose grid would not be able to describe small or local
deformation, whereas a dense grid may unnecessarily in-
crease the number of variables in the L-BFGS optimization
and thus prolong the computation. For five nodes per di-
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Fig. 2. Assessment of optimal parameters for the deformable registration algorithm. Presented is the normalized
correlation coefficient metric as a function of iteration step for three different grid sizes (5, 10, and 15 nodes per
dimension). Each panel follows for different grid sizes the three registration problems used in this work, namely between
the phases of CT0—-CT40, CT0O—CT20, and CT20—-CT40. The registration quality is assessed by the final values of the
metric. Note that a change from 5 to 10 nodes resulted in significant improvements, whereas a further increase from 10
to 15 nodes resulted in only a marginal improvement (2%) in the final value of the metric.

mension, the NCC between the CTO and CT40 phases was
found to be —0.993. The correlation was improved to
—0.996 and —0.997, respectively, when 10 and 15 grid
nodes per dimension were used. Computation time is in
the range of 3 to 5 hours, depending on the number of
slices in the study.

For comparison, the above analysis was repeated with the
insertion of an intermediate phase image, CT20. For the
case of five nodes per dimension, the final metric in the
CT0-CT40 registration could not reach the value in the
CT20-CT40 registration, indicating that the deformation
between CTO and CT40 was too complex to be described by
such a loose BSpline grid. However, for 15 nodes per
dimension, the registration calculations converged to
—0.9970 for CTO-CT40, —0.9978 for CTO-CT20, and
—0.9983 for CT20-CT40 registration. Similar behavior
was observed for the remaining two cases. The final metric
values for these two cases are presented in the inset of Fig.
2c. A further increase of node number dramatically in-
creases the computational burden but does not significantly
improve the accuracy. We therefore selected in this study a
grid with 15 nodes per dimension.

Deformation as determined by the deformable registration
of the inhale and exhale phases

The range and characteristics of the anatomy deformation
occurring during the respiration are of clinical interest. This
feature can be directly evaluated by using the coefficients of
the BSpline grid. We focus our discussion here on the lung
deformation. In Fig. 3a, we present a 3D visualization of the
BSpline grid nodes (the nodes are denoted by green spher-
ical dots) in the coregistration of CTO—CT40 images. In
Figs. 3b, 3c, and 3d, the deformations at all nodal points as
derived from the registration algorithm are displayed by
arrows. The orientation and length of an arrow show the
deformation direction and magnitude at the corresponding
points. The inferior parts of the lungs (and thus the liver)
move most. A deformation as large as 43.2 mm was ob-
served in the posterior region of the liver, which is con-

firmed by the checkerboard comparison of CTO and CT40
(Fig. 4a), where most discrepancies are observed in the
upper liver, stomach, and thoracic region. For the second
patient, a similar analysis shows a displacement up to 14.2
mm in the posterior part of the liver and 12.0 mm in the
thoracic region. However, the deformation was more uni-
formly distributed. The deformation of the third patient was
predominantly located in the liver, but with displacements
oriented differently from the previous 2 patients. Our results
seem to suggest that organ deformation and displacement
are patient specific (47), which hinders the development of
a common mathematical model for the respiratory process.
The deformation depends on anatomy and needs to be
determined individually.

Performance of image coregistration

The performance of image coregistration is usually
evaluated by using the checkerboard display and subtrac-
tion image. For the first case, the checkerboard images
before and after registration for an axial, sagittal, and
coronal slice are presented in Fig. 4a. It is seen that
before the image coregistration of CT0-CT40, the move-
ments in these slices are as large as 8 mm. After the
deformable registration, the two images become almost
indiscernible (Fig. 4b). The subtraction image between
the original CTO and CT40 images shows large HU
differences in the liver and thoracic regions (Fig. 4c). The
difference in the voxel intensity ranges from O to 875.
After the deformable registration, the maximum differ-
ence is reduced to 250 HU (Fig. 4d). The differences
appear mainly in the regions where the motion of small
structures such as bronchi cannot be easily described by
the BSpline lattice. In Fig. 4e we plot the histograms of
the fractional voxel number for a number of HU differ-
ences. In addition to the fact that the initial maximum
mismatch of 875 HU is reduced to 250 HU, the number
of pixels having a large HU difference is dramatically
reduced. For example, pixels with an HU difference greater
than 20 HU represent only less than 0.1% of the total number
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Fig. 3. Results from BSpline deformable calculation. (a) Representation of the grid nodes superimposed on lung
contours. (b) Visualization of resulting deformations. On each node, arrow length and orientation are proportional to
deformation magnitude and direction. (c, d) Same analysis for Patients 2 and 3 demonstrates that deformations are
patient dependent. (e) The node deformation can be interpolated to any location, such as the surface of an organ. In this
view, the lung surface extracted from CTO is represented as surface, whereas homologs surface extracted from CT40
as points. The arrows represent deformations from CTO to CT40 in random points on the lung surface. (f) The lung
surface at CTO was deformed with the deformations presented in (e) to contour the lung surface at CT40. Color
represents contouring error, ranging from less than 1.5 mm on most of the surface to 5 mm observed only for small
regions of the bronchial tree, where the registration algorithm performs poorly.
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Fig. 4. Checkerboard display of the inhale and exhale phases (a) before and (b) after deformable image registration. The
results show that the BSpline algorithm can properly model the lung deformation caused by the respiratory motion. The
subtract images of the two phases before and after registration are shown in (c) and (d). (e) In the histogram analysis
of the image differences, large differences of up to 750 Hounsfield units are observed initially for voxels located on the
lung—liver interface. After registration, the difference is reduced to 250 Hounsfield units.

of voxels after the image coregistration. We anticipate a further
improvement if more nodes are used. This gain is, of course,
achieved at the expense of an increased computational time.

For the last 2 patients, the registration results as assessed
by the checkerboard tool are presented in Fig. 5. Once
again, excellent registrations were achieved between CTO
and CT40 images.

Image interpolation

Comparison of the trajectories of implanted and surface
markers in the interpolated and actual images affords an
effective way to assess the performance of the proposed
image interpolation scheme. In Fig. 6, we show the 4D
trajectories of all the markers for two different interpolation
schemes. The curves in the top row for each fiducial marker
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Fig. 5. Checkerboard comparisons of CTO and CT40 for the second and third cases. (a) Discordance up to 8 mm is
observed before registration. (b) After the deformable registration, virtually no difference between the two images is
observable. (c, d) Similar results are obtained for the third case.

show the results derived from interpolating the CT0—-CT40
registration, along with the marker trajectories obtained
from the actual 4D images (dots). The curves in bottom row
for each fiducial show the marker trajectories derived by
interpolation from CTO-CT20-CT40. In the former case,
we found that the discrepancy of the marker positions in the
two image sets was less than 3 mm. When the intermediate
3D CT set, CT20, was added, the uncertainty was reduced
to less than 2 mm. It is sensible that the usage of an
intermediate phase would lead to an improvement in the
interpolation accuracy. In general, the determination of the
number of image sets for image interpolation is a tradeoff
between a few factors, notably the computational accuracy
and convenience.

We have also assessed the interpolation scheme by track-
ing the surface of anatomic structures. In Fig. 7, we show
the 3D plot of the distance between some structural surfaces

in the interpolated and actual CT10, CT20, and CT30 im-
ages for the 3 patients. To illustrate the utility of the struc-
tural surface distance plot, we have elected to display dif-
ferent structures for different patients. We noted that, for the
first patient (the first row of Fig. 7), a large error appeared
consistently at the slices near the top of the liver, where
binning artifacts have been identified in the acquired im-
ages. Binning is not used to generate the interpolated im-
ages, making them artifact free.

Checkerboard display for the first patient, comparing the
interpolated and actual images of CT10, CT20, and CT30, is
shown in Fig. 8. The two sets of images are highly similar,
with virtually no difference visible in the checkerboard. The
subtraction images for the same case are displayed in Fig. 9.
The histograms describing the differences in the voxel in-
tensities in the subtraction images are shown in the bottom
of Fig. 9. Overall, no significant difference was observed
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Fig. 6. Assessment of interpolation accuracy by tracking the trajectories of the implanted markers. Presented are
coordinates as function of interpolation step. The positions of the markers in the acquired 4D images (red dots) are
plotted together, with their correspondence deduced from the interpolation of the deformation field (curves). Deforma-
tion field from either direct CTO—CT40 registration (upper row) or use of an intermediary phase CT20 (lower row). For
all markers, maximum deviations are 3 and 2 mm, respectively.

between the interpolated and actual images, and the major
discrepancies occurred at the boundaries of small structures.

Segmentation in 4D CT

The deformation between CTO and CT40 can be used to
deduce both images and contours at the intermediate phases.
Surfaces delineated in CTO were warped to CT10, CT20, and
CT30, and the results are used in Fig. 10. Generally, the
difference between the two complementary surfaces is less
than 3 mm, as illustrated for Patient 1 in the top row of Fig. 7
for the lung surfaces. Even for small structures such as the
trachea, the error was generally less than 5 mm (middle row of
Fig. 7). The performance of the registration algorithm is inter-
esting, because it is commonly believed that a large number of
nodal points would be required to describe the deformation of

such small organs. Large error may also appear in a given set
of slices where the binning artifact was present.

To illustrate the application of the algorithm to deduce
tumor motion, in Fig. 10 we present the sagittal contours
corresponding to CT20 and CT40, warped from the tumor
contour delineated on CTO, overlaying on the background
image (CT40). This application allows us to monitor the tumor
path and shape changes as the patient breathes and helps us to
better define the margin for radiation treatment.

DISCUSSION

In radiation therapy, respiratory motion poses significant
challenges for treating tumors in the thorax or abdomen. It
can distort the shape of an object, degrade the anatomic
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Fig. 7. Assessment of interpolation accuracy by surface comparison. The error distances between interpolated and
acquired images are color-coded representation. Presented are the lung and external contour of the first patient, the
bronchial tree (second patient), and the diaphragm (third patient). Color coding ranges from 0 mm (blue) to 7 mm

(red).

position reproducibility during imaging, and necessitate
larger margins during radiotherapy planning. It also causes
inaccuracy in estimating the tumor volume, thereby pre-
venting an effective dose escalation for the treatment of a
target tumor. How to minimize its adverse effects on radi-
ation therapy represents a significant problem in achieving
the goal of conformal radiation therapy. Four-dimensional

CT scans, acquired synchronously with a respiratory signal,
provide not only the 3D spatial information, but also tem-
poral changes of the anatomy as a function of the respi-
ratory phase during the imaging and can be employed to
guide the treatment planning to explicitly account for the
respiratory motion. The availability of 4D imaging tech-
niques thus provides a useful tool to better understand the
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Fig. 8. A checkerboard comparison of interpolated and acquired images for the phases of CT10, CT20, and CT30. The
interpolated and actually acquired images are practically identical.

physiologic respiratory process and develop solutions to
the problem.

In this study we have extensively studied the interphase
correlation of the images during the respiratory process and
presented a method to interpolate the 4D images based on a
few sets of 3D images at different phases. The underlying
assumption of the approach is that the patient’s anatomy at
different phases can be related by using a deformable image
registration model. Using a BSpline technique, we were
able to interpolate the images at the intermediate phases to
within 3 mm even when only two sets of images at inhale
and exhale phases were used.

The proposed technique may have three practical impli-
cations. First, by reducing the number of 3D image sets, the
radiation dose to the patient can be reduced significantly.
When a modern multislice CT is used for a regular clinical
examination, the dose received by the patient may approach
10 mSyv for head and 20 mSv for the chest or abdomen. With
a 4D acquisition, because a patient is scanned multiple times
at each couch position during the imaging, the radiation

exposure will be considerably higher than the regular CT
scan (up to 1 order of magnitude higher). Effective dose
reduction is thus highly desirable for clinical application of
the cutting-edge 4D CT scanning technology. With the
proposed interpolation scheme, the radiation dose to the
patient can be reduced by 50% to 80%, which may have
significant clinical implication.

Second, the technique reduces the requirement for stor-
age disk space and may afford an effective method to
facilitate 4D CT data compression, storage, and retrieval.
The BSpline model used in this study provides a concise
and artifact-free representation of the deformation field
and the 4D images. The “decompression” of the image
can be realized by applying the deformation lattice on the
initial CT image. Our experience has shown that the disk
space usage can be reduced from 402 MB to 40 MB per
patient.

Finally, the model can be applied to interpolate contours
between phases, providing an alternative to the optical flow
methods reported by other groups (27). To incorporate 4D
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Fig. 9. Subtraction display of the interpolated and acquired images for the phases of CT10, CT20, and CT30. Histogram
analysis of the differences in images (last row) documents a maximum difference of 250 Hounsfield units. Only 0.01%
of the image pixels have a difference larger than 20 Hounsfield units.

CT data into radiation treatment planning, a necessary step
is the delineation of the normal anatomic structures on the
data sets. Because the segmentation process in 3D imaging
is already a tedious and labor-intensive process, it seems to
be impractical for clinicians to outline the structures slice by
slice and phase by phase. Because the voxel-to-voxel map-
ping between different phases is established during the
deformable registration, mapping of the segmented struc-
ture contours from one phase to another takes essentially no
additional time.

Theoretically, there is no limitation in the number of
nodes that can be used with the BSpline model, with an
extreme case where one node is located in each voxel. Such
an extreme case should be able to model any trajectory and

structures as small as conceivable but would require opti-
mization of 45 million variables. In reality, a grid of 15
nodes means 10,125 variables to be optimized, and a
“small” increase to 20 nodes per dimension leads to 24,000
variables, which pushes the calculation to the limit of the
current optimization algorithm. A realistic registration soft-
ware should balance the number of nodes and the accuracy
of registration. Although there are a number of deform-
able image registration algorithms, the BSpline technique
is known for its simplicity and reasonable accuracy. It is
a preferred option, because the technique provides a good
tradeoff between a number of practical factors. Other
formalisms include, to name a few, fluid flow algorithm
and finite-element model. The fluid flow algorithm is
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Fig. 10. Automatic mapping of contours based on the BSpline
deformable calculation. The tumor trajectory is deduced by apply-
ing the deformation field on the contour delineated in CTO. Pre-
sented are contours warped to CT20 and CT40 from CTO. The
background image of CT40 confirms agreement of warped contour
and observed tumor.

better suited for small deformations, which is hardly the
case in 4D CT applications. The finite element model is
in principle most accurate, because it models the organ
motion based on real anatomic forces occurring in nature.
A major drawback of the approach is that the elasticity
and viscosity parameters that model the tissues/organs
are poorly known, hindering its practical application.
Because the deformable image registration is a fast de-
veloping field, better and faster algorithms may be more
available in the future.

CONCLUSIONS

We have demonstrated the feasibility of using a BSpline
deformable image registration model to interpolate the in-
termediate phases by starting from two or three sets of 3D
CT images acquired at different phase points. The study
suggests that the organ deformation during the breathing
process can be well modeled by using a BSpline deformable
algorithm. The proposed technique may find useful appli-
cations in reducing radiation dose, removing binning arti-
facts, generating images at a finer-phase resolution for better
evaluation of the physiologic respiratory process, and de-
creasing the disk storage usage in 4D imaging.
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Abstract—Radiation therapy has gone through a series of revolutions in the last few decades and it is now
possible to produce highly conformal radiation dose distribution by using techniques such as intensity-modulated
radiation therapy (IMRT). The improved dose conformity and steep dose gradients have necessitated enhanced
patient localization and beam targeting techniques for radiotherapy treatments. Components affecting the
reproducibility of target position during and between subsequent fractions of radiation therapy include the
displacement of internal organs between fractions and internal organ motion within a fraction. Image-guided
radiation therapy (IGRT) uses advanced imaging technology to better define the tumor target and is the key to
reducing and ultimately eliminating the uncertainties. The purpose of this article is to summarize recent
advancements in IGRT and discussed various practical issues related to the implementation of the new imaging
techniques available to radiation oncology community. We introduce various new IGRT concepts and ap-
proaches, and hope to provide the reader with a comprehensive understanding of the emerging clinical IGRT

technologies. Some important research topics will also be addressed.
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INTRODUCTION

Radiotherapy is an image-guided intervention, and im-
aging is involved in every key step of the process,
ranging from patient staging, simulation, treatment plan-
ning, and radiation delivery, to patient follow-up. The
evolution of radiation therapy has been strongly corre-
lated with the development of imaging techniques. Dur-
ing the early days when Roentgen first discovered x-rays,
2-dimensional (2D) transmission images of the human
body provided unprecedented imagery of bony land-
marks, which allowed radiologists to deduce the location
of internal organs. Using planar radiographs, radiologists
planned cancer treatments by collimating rectangular
fields that circumscribed the presumed tumor location.
Additional blocks placed daily to match marks on the
patient’s skin, and later using low-temperature-melting
dense alloys. The emergence of computed tomography
(CT) in the 1970s revolutionized radiation therapy and
allowed us to use image data to build a 3-dimensional
(3D) patient model and design 3D conformal radiation
treatment. In general, 3D conformal radiation therapy
(3DCRT) is a method of irradiating a tumor target vol-
ume defined in a 3D anatomical image of the patient with
a set of x-ray beams individually shaped to conform to
the 2D beam’s-eye-view (BEV) projection of the target.
The reduction in normal tissue irradiation when moving
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from 2D to 3D should theoretically improve the thera-
peutic ratio and allow the tumor target volume to be
treated to a higher dose, thereby improving the probabil-
ity of tumor control. Recent technical advances in plan-
ning and delivering intensity-modulated radiation ther-
apy (IMRT) provide an unprecedented means for
producing exquisitely shaped radiation doses that closely
conform to the tumor dimensions while sparing sensitive
structures.' The development of 3DCRT and IMRT
places more stringent requirements on the accuracy of
beam targeting. In practice, large uncertainties exist in
tumor volume delineation and in target localization due
to intra- and inter-organ motions. The utility of modern
radiation technologies, such as 3DCRT and IMRT, can-
not be fully exploited without eliminating or significantly
reducing these uncertainties. The need to improve tar-
geting in radiation treatment has recently spurred a flood
of research activities in image-guided radiation therapy
(IGRT).

While all radiation therapy procedures are image
guided per se, traditionally, imaging technology has pri-
marily been used in producing 3D scans of the patient’s
anatomy to identify the location of the tumor prior to
treatment. The verification of a treatment plan is typi-
cally done at the level of beam portals relative to the
patient’s bony anatomy before patient treatment. In cur-
rent literature, the term of IGRT or IG-IMRT is em-
ployed loosely to refer to newly emerging radiation plan-
ning, patient setup, and delivery procedures that integrate
cutting-edge image-based tumor definition methods, pa-
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tient positioning devices, and/or radiation delivery guid-
ing tools. These techniques combine new imaging tools,
which interface with the radiation delivery system
through hardware or software, and state-of-the-art
3DCRT or IMRT, and allow physicians to optimize the
accuracy and precision of the radiotherapy by adjusting
the radiation beam based on the true position of the target
tumor and critical organs. With IGRT, it is also possible
to take tumor motion into account during radiation ther-
apy planning and treatment. Because IGRT improves
precision, it raises the possibility of shortening the du-
ration of radiation therapy by reducing the number of
treatment sessions for some forms of cancer.

The purpose of this article is to highlight the recent
developments of various available imaging techniques
and present an overview of IGRT. Stanford experience
on various aspects of clinical IGRT will also be pre-
sented. We hope that readers will gain an overall picture
of IGRT and find it easier to navigate themselves through
the subsequent articles in this issue, which focus on
providing technical details and/or specific clinical appli-
cations of the available IGRT tools.

ISSUES IN IGRT

In current 3DCRT or IMRT, uncertainties exist in
many circumstances, such as tumor target definition,
patient immobilization, and patient breathing motion,
which make it difficult to administer a high radiation
dose to the planned location. The exact locations of the
boundaries of the tumor target and the adjacent sensitive
structures are often not known precisely, and a popula-
tion- and disease site-based safety margin is used rou-
tinely to cope with a problem that is otherwise insoluble.
An important task of IGRT is to eliminate or signifi-
cantly reduce the margins involved in defining the clin-
ical and planning target volume (CTV and PTV, respec-
tively).

Many IGRT solutions have been proposed to re-
solve the problem of target definition and beam targeting.
Briefly, IGRT developments are focused in four major
areas: (1) biological imaging tools for better definition of
tumor volume; (2) time-resolved (4D) imaging tech-
niques for modeling the intra-fraction organ motion; (3)
on-board imaging system or imaging devices registered
to the treatment machines for inter-fraction patient local-
ization; and (4) new radiation treatment planning and
delivery schemes incorporating the information derived
from the new imaging techniques. These are discussed in
more detail in the following.

TUMOR TARGET VOLUME DEFINITION

CT, MRI, and ultrasound (US) imaging techniques

To be able to “see” the extent of disease more
clearly and define the tumor target volume relative to the
patient’s anatomy have been among the most important
issues in radiation oncology. CT has played a pivotal role
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in the process. Many radiation oncology departments
have acquired dedicated CT scanners. A typical patient’s
3D CT data set has more than 100 axial slices, each of
which contains 512 X 512 pixels. With 16 bits per pixel,
a CT data set can easily run over 50 megabytes. CT has
many advantages, including high spatial integrity, high
spatial resolution, excellent bony structure depiction, and
the ability to provide relative electron density informa-
tion used for radiation dose calculation. The recent de-
velopment of ultra-fast multi-slice CT has opened a new
dimension to CT technology and allows time-resolved
(4D) CT imaging of patient’s cardiac and breathing cy-
cles. Using array detectors, multisection CT scanners can
acquire multiple slices or sections simultaneously and
thereby greatly increase the speed of CT image acquisi-
tion. Currently, all manufactures are moving toward 8-,
16- and even higher slice CT technology. Radiation
oncology application of 4D CT will be discussed later.

MRI provides superior soft tissue discrimination,
especially for central nervous system (CNS) structures
and within the abdomen and pelvis, and has been widely
used in the diagnosis and tumor delineation. MRI is also
utilized for virtual simulation of radiation treatment for
some specific disease sites. Physically, MRI involves the
determination of the bulk magnetization of nuclei within
a given voxel through use of radio-frequency (RF) radi-
ation and magnetic fields. In a clinical setting, MRI is
typically employed together with CT images with the
help of image fusion software to delineate the extent of
the malignancy. As with other imaging techniques, MR
technology has gone through a series of revolutions in
the past 3 decades. MRI technology is moving toward
higher field strengths to further improve the quality of
MR images, as evidenced by the installations of 3T
scanners in many institutions (9.4 T MRI scanners have
been installed in a few institutions). Fast-cine MRI is
also becoming increasingly available and may offer phy-
sicians an alternative for imaging the temporal process of
patient breathing or even heart beating. Figure 1 shows
an example of MRI images acquired at 2 different phases
for a liver cancer patient. In addition, the development of
some specialized MRI scans has also attracted much
attention. These include diffusion and perfusion MRI,
dynamic contrast MRI, MR angiography, MR spectro-
scopic imaging (MRSI), and functional MRI (fMRI).
The recent development of diffusion tensor imaging
(DTI), for instance, enables diffusion to be measured in
multiple directions and the fractional anisotropy in each
direction to be calculated for each voxel. fMRI measures
signal changes in the brain that are due to changing
neural activity. These techniques enable researchers to
make axonal and functional maps to examine the struc-
tural connectivity of different regions in the brain and
may allow better definition of brain tumors and better
sparing of sensitive regions.*

Ultrasound (US) is another useful imaging modality
for radiation therapy. US utilizes high-frequency (1~10
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Fig. 1. Cine MR images at inhale and exhale phases for a liver cancer patient.

MHz) sound waves to generate anatomical images that
have high spatial resolution and tissue characterization
discrimination power through image texture analysis. In
radiation therapy, it has been particularly useful in pros-
tate imaging. Transrectal US permits an examination/
localization of the prostate gland>® and is the imaging
modality of choice in guiding the prostate seed implant
procedure.

Biological imaging

Regardless of the course of therapy, current stan-
dard imaging modalities such as CT and MRI do not
always provide an accurate picture of the tumor extent,
especially in the zone of infiltration that may be the
limiting factor in an attempt of a radical treatment ap-
proach. This has been shown to be the case for gliomas
before surgical intervention. It is also true when attempt-
ing to determine the volume of residual tumor for addi-
tional therapy owing to problems in differentiating post-
therapy changes from residual tumor. Indeed, the above-
mentioned imaging modalities are anatomic in nature,
i.e., they provide snapshot of a patient’s anatomy without
biological information of various organs or structures.
Biological imaging, defined as the in vivo characteriza-
tion and measurement of biological processes at the
cellular and molecular level, is an emerging multidisci-
plinary field resulting from the developments of molec-
ular biology and diagnostic imaging and shows signifi-
cant promise to revolutionize cancer detection, staging/
re-staging, treatment decision-making, and assessment of
therapeutic response. MRSI and positron emission to-
mography (PET) are 2 valuable modalities for radiation
therapy planning. "H MRSI combines the advantages of
obtaining biochemical data by water-suppressed 'H MR
spectroscopy with the spatial localization of that data.
MR spectroscopy is useful in characterization of brain
and prostate tumors. In the brain, for example, malignant
tumors have an increased rate of membrane turnover
(increased level of choline) and a decreased concentra-
tion of neurons. Furthermore, spectroscopy allows for
the noninvasive monitoring of the response of residual
tumor to therapy and for differentiating tumor recurrence

from tissue necrosis. Recently, Pirzkall et al.” have ap-
plied multi-voxel MRSI to assess the impact of MRSI on
the target volumes used for radiation therapy treatment
planning for high-grade gliomas. It was found that, al-
though T,-weighted MRI estimated the region at risk of
microscopic disease as being as much as 50% greater
than by MRSI, metabolically active tumor tissue still
extended outside the T, region in 88% of patients by as
much as 28 mm. In addition, T,-weighted MRI suggested
a lesser volume and different location of active disease
compared to MRSI. The discordance of high-grade-gli-
oma target volumes resulting from MRI was also ob-
served in other functional imaging modalities such as
(PET) and single-photon emission computed tomogra-
phy (SPECT).

While there is a growing body of evidence now
indicating that in vivo MRSI provides unique informa-
tion on metabolism that will ultimately affect clinical
diagnosis, choice and monitoring of therapies, and treat-
ment planning, in reality, MRSI has mainly remained a
research tool confined to a small number of academic
institutions.®~'? PET, on the other hand, is more widely
used and has been harnessed into the planning process in
many clinics. In general, PET has lower image resolu-
tions than CT images and, with commonly used fluorine-
18-labeled deoxyglucose (FDG) tracer, contains no ana-
tomic information about normal structures. Information
derived from PET needs to be fused with the correspond-
ing CT images for treatment planning. The fusion of PET
and CT images are simplified with the use of the hybrid
PET/CT scanner.'>'* Figure 2 shows the data flow of a
typical PET/CT scanner.

Hybrid PET/CT systems have several positive fea-
tures that are absent in stand-alone PET and CT units.
PET/CT is a hardware-based image-fusion technology
that virtually eliminates the uncertainty and inconve-
nience of currently available software fusion of separate
PET and CT images, which are often acquired with
patients in different positions. It should be emphasized
that the PET/CT unit is not simply a PET and CT
combination—not from the perspective of system design,
nor the practical utility. Other than the fact that one does
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Fig. 2. Schematic drawing of the data flow in a hybrid PET/CT.

not have to go through the cumbersome and time con-
suming software fusion process, it has the advantages of
simultaneous availability of the fused images, conve-
nience to the patient and the physician, increased physi-
cian confidence in interpreting the image findings, and
~30% of reduction in PET scanning time due to the use
of CT data for PET attenuation correction.

Integration of biological imaging techniques and
multimodality image fusion

FDG-PET provides a means to study metabolic
activity of tumors in vivo. Initial studies incorporating
FDG-PET into treatment planning have been report-
ed.”>"'7 Bradley et al.'” have carried out a prospective
study to determine the impact of functional imaging with
FDG-PET on target volumes among non-small cell lung
cancer (NSCLC) patients being considered for definitive
radiation therapy. They found that radiation targeting
with fused FDG-PET and CT images resulted in alter-
ations in radiation therapy planning in over 50% of
patients by comparison with CT targeting. The changes
included the alterations in the AJCC TNM stage (31% of
the patients studied) and modification of target volume
(58% of the patients studied). In a separate study, Mac-
Manus et al.'® reported that 30% of patients with locally-
advanced NSCLC became ineligible for curative radio-
therapy because of detection of either distant metastatic
disease or intrathoracic disease too extensive for radical
radiation. Recently, Howard et al.'® have studied the
value of FDG-PET/CT for esophagus cancer and re-
ported similar findings.

Emerging PET tracers for oncologic imaging

While FDG-PET has been shown to be effective for
a number of malignancies, imaging of many other neo-
plasms, such as breast cancer and prostate cancer, with
FDG has shown less success.'®?® Many pitfalls have
previously been described with FDG-PET imaging. The

FDG tracer can be nonspecifically taken up by several
benign conditions such as inflammatory disease, pneu-
monia, brown fat, muscle, bowel uptake, and granulo-
matous disease. Also, slow-growing indolent tumors
may exhibit only a mild increase in glucose metabolism
and therefore be missed by FDG-PET.?!'~** Thus, FDG-
PET is only minimally useful for the evaluation of indo-
lent tumors such as organ-confined prostate cancer. The
recent development of fluorothymidine (FLT)**~2 pro-
vided a new opportunity to improve the sensitivity and
specificity of PET imaging of cancer. Because there is
upregulation of thymidine transport into malignant cells
due to accelerated deoxyribonucleic acid synthesis, ei-
ther ''C or '"®F-labeled thymidine radiotracers can be
used to determine cellular proliferation. Several studies
have shown that the accumulation of FLT correlates
better with proliferation in comparison with the com-
monly used FDG tracer.>>?® Recently, Smyczek-Gargya
et al*’ have reported FLT-PET imaging experiments
involving 12 patients with 14 primary breast cancer
lesions (T2-T4). Thirteen of the 14 primary tumors dem-
onstrated focally increased FLT uptake. The study
showed that FLT-PET is suitable for the diagnosis of
primary breast cancer and locoregional metastases and
the high image contrast of the technique may facilitate
the detection of small foci.

Agents, such as antisense molecules, aptamers, an-
tibodies, and antibody fragments, can be aimed at mo-
lecular targets for biological imaging. Tumor receptors
and certain cellular physiologic activities, including me-
tabolism, hypoxia, proliferation, apoptosis, angiogenesis,
and infection, provide such targets. In addition to FLT,
there are several other new nuclide imaging tracers under
clinical or laboratory investigations,>'*® 3> which in-
clude, to name a few, ''C-Acetate,° 3% ®F-choline,>**°
"'C-choline,*** *Cu-DOTA-Bombesin*’, '*F-FMISO,**
IBE_FAZA,* *Cu-ATSM.*’ For example, carcinogene-
sis is often characterized by enhanced cell proliferation
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Fig. 3. Example of 4D CT where respiratory cycle irregularities
have produced significant interbed mismatches near the base of
the lung.

and transformation, and elevated levels of choline and
choline kinase activity in certain neoplasmic dieases
have motivated the development of positron-labeled cho-
line analogs for noninvasive detection of cancer using
PET.*! Choline acts as a precursor for the biosynthesis of
phospholipids, e.g., phosphoatidylcholine, the major
components of cell membrane. Several preliminary stud-
ies have demonstrated the potential of the new tracer for
prostate cancer and many other cancers.’’*!48

Biologically conformal radiation therapy (BCRT)

The current 3DCRT or IMRT inverse planning is
typically aimed at producing a homogeneous target dose
under the assumption of uniform biology within the
target volume. In reality, it is well known that the spatial
biology distribution (e.g., clonogen density, radiosensi-
tivity, tumor proliferation rate, functional importance) in
most tumors and sensitive structures is heterogeneous.
Recent progress in biological imaging is making the
mapping of this distribution increasingly possible. This
new development opens a new avenue of research,
coined BCRT.*~3 The goal of BCRT is to take the
inhomogeneous biological information derived from bi-
ological imaging into account and to produce customized
nonuniform dose distributions on a patient specific basis.
The simultaneous integrated boost (SIB) to elective vol-
umes recently appearing in the literature represents a
simple example of BCRT.

To establish BCRT, 3 major aspects must be ad-
dressed: (1) determination of the distribution of biolog-
ical properties of the tumor and critical structures; (2)
prescription of the desired dose distribution for inverse
planning; and (3) inverse planning to generate most
faithfully the prescribed nonuniform dose distribution.
While the development of molecular imaging techniques
is critically important in mapping biology distributions,

the successful integration of this information into IMRT
planning through steps (2) and (3) is also indispensable
to fully exploit the obtained biology information to im-
prove patient care. With the optimistic assumption that
spatial biology distributions within a patient can be reli-
ably determined using biological imaging in the future,
Yang and Xing®® have established a theoretical frame-
work to quantitatively incorporate the spatial biology
data into IMRT inverse planning. To implement this
method, they first derived a general formula for deter-
mining the desired dose to each tumor voxel for a known
biology distribution of the tumor based on a linear-
quadratic (LQ) model. By maximizing the TCP under the
constraint of constant integral target dose, they obtained

N
Di(i) =D, —
o

13

1 1 )
(y,ef - y[)AT - —,ln<w>,

Q; Q; Q;pP;
ey

where D{|(i) is the desirable prescription dose at the voxel
1 with the tumor cell density, radiosensitivity, and pro-
liferation rate given by (p;, «;, v;), and D, is the refer-
ence dose for the voxel with reference radiobiological
parameters (P,.p Qeps Veer)- FOr @ given disease site, the
radiation dose used in current clinical practice with “in-
tent to cure” can be used as a good starting point in
selecting the value of D,,. The relation is quite general
and can be used as prescription dose to guide an arbitrary
inverse planning objective function aimed at producing a
customized dose distribution in accordance with the spa-
tial biology information.

INTRA-FRACTION ORGAN MOTION:
MANAGING THE RESPIRATORY MOTION

Components affecting the reproducibility of target
position during and between subsequent fractions of ra-
diation therapy include the displacement of internal or-
gans between fractions and internal organ motion within
a fraction. Depending on the disease site, these compo-
nents contribute differently to the margins that are to be
added around the CTV to ensure adequate coverage. In
the thorax and abdomen, intra-fraction internal anatomy
motion due to respiration is a principal cause for large
safety margins. Motion can distort target volumes and
result in positioning errors as different parts of the tumor
move in and out of the image window with the patient’s
breathing cycle. Several studies, conducted to examine
the extent of diaphragm excursion due to normal respi-
ration, reported the range of motion from ~0.5 to 4.0 cm
in the superioinferior direction. As a consequence of a
significant margin added around the CTV, a large
amount of normal tissue surrounding the CTV is irradi-
ated. Accounting for such motion during treatment has
the potential to reduce margins, leading to reduced radi-
ation toxicity and risk of treatment-induced complica-
tions, and yielding room for dose escalation.
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A complete solution compensating for respiratory
motion should ideally start at the simulation stage. There
have been several studies to characterize the amplitude,
phase and periodicity of organ motion®*~>° using fluo-
roscopic x-rays, ultrasound,”>® and magnetic or RF
markers.””®® The development and deployment of spiral
and multi-detector CT scanners have made practical the
acquisition of time-resolved or 4D CT images. The re-
constructed images acquired with patients in treatment
positions provide 4D models upon which geometric as
well as dosimetric computations can be performed. 4D
PET is also becoming clinically available.®'~®* Treat-
ment-wise, respiratory gating technology and tumor
tracking techniques to synchronize delivery of radiation
with the patient’s own respiratory cycle are under inten-
sive investigations.

4D CT imaging

A 4D CT can be either prospective or retrospective.
In the former case, the scanner collects images at only
one of the breathing phases of the patient instead of
scanning continuously. The retrospective 4D CT scan
results in multiple image sets, corresponding to different
breathing phases of the patient, and consists of 3 rela-
tively orthogonal processes®*~®%: recording of respira-
tory signal(s), acquisition of time-dependent CT projec-
tion data, and construction of a 4D image from these
data. The first objective can be achieved by tracking a
surrogate of respiration-related organ and tumor motion,
such as tidal volume measured with a spirometer,“’69
chest expansion monitored by a pneumatic bellows,”® or
a reflecting external marker placed on the abdomen and
tracked with a camera.®* Time-dependent CT data can be
acquired by oversampling in either helical or cine mode,
and constructing several CT slices over the full respira-
tory cycle at each axial location.®”””" Finally, the respi-
ratory signal and CT data must be combined into a 4D
series, providing a CT volume at several points through-
out the respiratory cycle. In this section, we will focus
primarily on the implementation of 4D CT provided by
the Varian Real-time Position Management (RPM) cam-
era/software and the GE Discovery ST multislice
PET/CT scanner.

4D CT patient setup proceeds along the same lines
as a standard 3D CT exam. The patient is immobilized on
the scanner bed, and aligned using room and scanner
lasers. Sagittal and coronal scout images are used to
verify patient positioning, and the setup is adjusted as
necessary. At this stage of the setup, the 4D procedure
begins to diverge from the 3D exam.

The RPM system consists of an infrared source,
CCD camera, and a reflecting block. The block is at-
tached to the patient’s abdomen, typically just inferior to
the xiphoid process, and the anterioposterior motion of
the block is captured by the camera. This motion is
analyzed in real-time by Varian software on a computer
connected to the RPM camera. The breathing pattern is
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recorded for the duration of the scan, and is referred to as
the “respiratory trace.” Once the scan has finished, the
software retrospectively computes the phase at each
point of the respiratory trace by determining the location
of the peaks at end-inspiration, and assigning percent-
ages to interpeak points based on a linear interpolation of
the peak-to-peak distance. For example, under this
scheme, end-inspiration occurs at 0%, while end-
expiration typically appears near 50—60%. The peak-to-
peak distance can vary between respiratory cycles, as can
the position of end-expiration with respect to end-
inspiration.

Irregularities in a patient’s respiratory pattern can
often be reduced by encouraging the patient to breathe
calmly and consistently, and then relying on the patient’s
compliance during the scan. If this free-breathing ap-
proach is insufficient, the RPM software can provide
audio coaching in the form of a “breathe in, breathe out”
recording, which is manually or automatically timed to
the patient’s natural rhythm. Some groups have used
video feedback either alone or concurrently with audio
instructions.”> While audio and video coaching can help
by stabilizing the respiratory period, amplitude and base-
line, they can complicate matters for patients with com-
promised respiratory function, who find it difficult or
impossible to maintain a regular rhythm. Another solu-
tion is active breath control (ABC)”*~7> which uses mod-
ified ventilator equipment to control the airflow, albeit at
the (possibly significant) expense of patient comfort.

Once a sufficiently regular breathing pattern has
been established, the CT data is acquired in “cine” mode.
This is a step-and-shoot technique, whereby the gantry
rotates several times at each bed position to acquire data
over the full respiratory cycle. The raw data is partitioned
into bins corresponding to a user-selected time interval
(typically less than 1/10th the average cycle), and CT
slices are automatically reconstructed from these bins.
Because several respiratory points are sampled at each
bed position, a 4D CT scan can take several times as long
as a corresponding 3D CT, resulting in typically 1500—
3000 CT slices for a 20—40-cm axial FOV.

The respiratory and scan data are combined at a
separate computer, the Advantage Workstation (AW)
(GE Medical Systems), which uses the respiratory trace
to sort the oversampled CT slices according to their
phase. The AW does perform the phase calculations, but
rather relies on the phase stamp computed by the RPM
during the creation of the respiratory trace file. Missing
phases for any couch position are replaced with their
nearest neighbor, providing a sorted image without any
phase gaps. The user can navigate through the data in
each axial direction, similar to standard viewing soft-
ware, but can also scroll through the respiratory phases
from end-inspiration to end-expiration. Individual phases
can be subsequently extracted, or combined into aver-
aged or minimum/maximum intensity projections, and
exported to planning software in the form of standard
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Fig. 4. Motion phantom study for the 4D-PWLS method with
the thorax phantom. The left and middle columns are the
original phases obtained from the GE Advantage Workstation,
for 100 mA and 10 mA, respectively; the right column shows
the 10-mA phases after 4D-PWLS processing. The red rectan-
gles represent the selected ROI for calculation of SNRs, each of
which contains 5 X 5 X 5 voxels. PWLS smoothed 10-mA
scan resulted in more than 2-fold increase in the SNR for every
phase of the periodically moving phantom. Similar results were
obtained in a patient 4D CT study.

DICOM series. These exported image series form the
basis of 4D treatment planning.

Unresolved issues in 4D CT

The AW sorts the data by phase rather than ampli-
tude. If the breathing were perfectly regular from cycle to
cycle, then phase- and amplitude-based sorting would
give very similar results. The problem arises when there
is variation in amplitude, period, or baseline, or when the
onset of end-expiration does not occur at the same point
each cycle. When these inconsistencies arise, the sorted
CT images may contain mismatch artifacts at the inter-
face between bed positions (see Fig. 3). Recent studies
have investigated amplitude-based binning as an alterna-
tive to the phase-based approach, and it appears that
amplitude sorting can improve image quality in many
cases.’®”’® Other researchers have matched adjacent CT
slices without using a respiratory trace, by maximizing
the continuity of CT units integrated over regions of
interest.”! Yet another promising approach involves in-
terpolating the CT data continuously between end-cycle
peaks using deformable models.””

A second issue arises in the correlation between
external fiducial movement and tumor/organ motion.
Amplitude ratios between fiducial and tumor displace-
ment may vary from cycle to cycle, and thoracic and
abdominal points may involve relative phase shifts.’**
These shifts may be especially crucial for tumors near
the lung, where hysteresis is prevalent. Finally, larger
organs such as the liver can experience substantial de-
formation during inspiration and expiration, which may
not be adequately captured by rigid-body interpolation
between points in the respiratory cycle

Finally, even if the 4D CT images have been ac-
quired without problem, there remains the issue of re-
producibility at treatment.®' If treatment planning and
delivery are based on 4D CT, there is an implicit as-
sumption that anatomic motion during treatment will
match the tumor and organ motion observed during
setup. This assumption can be checked to some degree
through frequent gated or breath-hold portal imaging.®
On the other hand, it is reasonable to assume the patient
will relax over time, so that their breathing becomes
shallower or changes tempo. Indeed, studies have dem-
onstrated that some patients exhibit systematic respira-
tory changes over a several-week course of radiation
therapy, even with visual and audio coaching.®® These
issues strike at the heart of IGRT, and provide a fertile
ground for research.

4D CT usually delivers more radiation dose than the
standard 3D CT, because multiple scans at each couch
position are required to provide the temporal informa-
tion. We have developed a method to perform 4D CT
scans at relatively low current, hence reducing the radi-
ation exposure of patients.®® To deal with the increased
statistical noise caused by the low current, we proposed
a novel 4D penalized weighted least square (4D-PWLS)
smoothing method, which can incorporate both spatial
and phase information. The 4D images at different
phases are registered to the same phase via a deformable
model, whereby a regularization term combining tempo-
ral and spatial neighbors is designed. The proposed
method was tested with phantom experiment (see Fig. 4).
for an example) and patient study, and superior noise
suppression and resolution preservation were observed.

4D PET and related issues

4D PET poses a problem distinct from 4D CT, in
that signal is inherently limited by the tolerable patient
dose. The result is that any PET scan requires a signifi-
cant amount of time per bed position (usually a few
minutes) to acquire sufficient data to produce a good
image. This limitation makes it difficult to partition PET
data with the same time resolution possible in 4D CT, but
nonetheless, acquisition methods are clinically available
to obtain PET images at end-inspiration or end-
expiration. The most common solution is to gate the PET
scan at the desired respiratory end-point, and reconstruct
a single bin of gated data.®*~%¢

Patient setup proceeds in the same manner as an
ungated PET scan, and a CT image is acquired for
attenuation correction just prior to the PET. At this point,
the RPM system monitors patient breathing by tracking
the reflecting block, and the acquisition trigger is set by
the user to occur at some given point (say, end-
inspiration) in the cycle. Each time the RPM camera
determines that the reflecting block (and, by extension,
the patient’s respiration) reaches this point in the respi-
ratory cycle, a trigger is sent to the scanner, and data
accumulation is initiated. Gated PET differs fundamen-
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tally from the 4D CT protocol, by elevating the RPM
system to this active role in data acquisition.

In gated mode, the user is able to select both the
width of the acquisition window and the number of
sequential bins to record each respiratory cycle. The bin
width directly affects image quality, because the signal-
to-noise ratio within an image asymptotically approaches
the square root of the signal level.*” Multiple bin acqui-
sition allows the capture of the full respiratory cycle in
several bins, offering the possibility of retrospectively
sorting into 2 or more respiratory phases. Each time the
RPM trigger is received, data is directed to the initial bin,
and then to the remaining bins sequentially until the next
trigger. This process continues for the duration of the
scan. Ideally, the scan duration would be chosen such
that the first bin (the respiratory point of most interest)
would accumulate as many data points as a comparable
ungated scan (i.e., divide the bin width by the duty
cycle). In reality, because this would lengthen the typical
PET scan by a factor of 4 or 5, practical clinical consid-
erations may require the gated scan to be shortened, with
corresponding image degredation.

Once the scan has finished, it is possible to associate
each bin (beyond the first bin) with a corresponding point
in the respiratory cycle. Because the respiratory trace is
recorded by the RPM, it is a relatively simple matter to
analyze the respiratory motion offline and make this
correspondence. It is also possible to retrospectively
combine multiple bins into a single bin, merging all the
data to create an effectively ungated scan. However,
these methods are not yet available from the vendor as a
clinical tool, and must be performed by the user in the
context of research efforts. Once the desired bin has been
selected, its data can be reconstructed using the vendor-
supplied filtered backprojection or OS-EM algorithms.
The image results can subsequently be exported to treat-
ment planning systems for review, similar to ungated
PET series.

A salient point in the PET reconstruction process
is the specification of the attenuation correction map.
The current clinical design uses the CT scan acquired
just prior to the PET specifically for this purpose. This
attenuation correction CT can be an acquired during
either free breathing or breath-hold. Some research
has indicated that PET reconstructions can be quite
sensitive to distortions in the attenuation correction
map,*®~°° and investigations are ongoing into the use
of 4D CT or other models to accurately account for
attenuation.®’®! On the Varian/GE system, this re-
quires selecting the appropriate images from the 4D
CT on the AW, sending these series back to the
scanner, generating the attenuation correction maps
for each 4D PET bin, and then reconstructing each bin
separately. Once again, this is a research solution, and
not yet available from the vendor for clinical use.
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Combining 4D PET with 4D CT and enhancement
of the performance of 4D PET with post-acquisition
data processing

Once the 4D PET has been acquired (either a single
phase, or perhaps several), it is possible to create a 4D
PET/CT.®! This involves manually selecting the PET and
CT images with corresponding respiratory phases (or
amplitudes), and fusing them on viewing/planning soft-
ware. We have recently developed a 4D-4D image reg-
istration algorithm, which allows us to automate the
process. If the CT and PET scans are acquired with the
same patient position on the same exam, then the process
is a particularly simple hardware-based registration. On
the Eclipse treatment planning system, for example, 2
images (not just PET/CT, but other modalities as well)
can be automatically fused if they share the same
DICOM coordinates. If the DICOM coordinates are not
identical, the registration is more difficult, requiring
manual or automated shifts and rotations to match ana-
tomical landmarks or fiducials. Fusion may be addition-
ally complicated by organ deformation®***(see Rigid
and Deformable Image Registration Section below). At
the present time, PET/CT hardware fusion for ungated
scans is well established and readily available within the
clinical setting.'*'* 4D PET/CT registration, however,
remains primarily within the research domain.

The major issue in 4D PET is the lack of statistics.
Because the collected photons are divided into several
frames, the quality of each reconstructed frame is de-
creased with increasing number of frames. The increased
noise in each frame heavily degrades the quantitative
accuracy of the PET imaging. We have recently devel-
oped 2 corrective methods to enhance the performance of
4D PET. The first method, coined “retrospective” stack-
ing (RS),%%* combines retrospective amplitude-based
binning of data acquired in small time intervals, with
rigid or deformable image registration methods. Unlike
gating techniques, RS uses data along the entire respira-
tory cycle, thereby minimizing the need for lengthened
scans while providing a 4-dimensional view of the region
of interest.®*®* In the second approach,’* we reconstruct
each frame with all acquired 4D data by incorporating an
organ motion model derived from 4D-CT images by
modifying the well-known maximum-likelihood
expectation-maximization (ML-EM) algorithm. During
the processes of forward- and backward-projection in the
ML-EM iterations, all projection data acquired at differ-
ent phases are combined together to update the emission
map with the aid of the deformable model, the statistics
are therefore greatly improved. Both phantom and pa-
tient studies have indicated promising potential of the 2
methods.

Radiation treatment planning based on 4D information

How to maximally utilize the time-resolved image
information derived from 4D CT or PET/CT represents
one of the challenges in IGRT. In reality, the information
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Fig. 5. Tumor contours for 3 breathing phases. The contours
labeled as CT20 and CT 40 were produced by applying the
deformation field on the tumor contours delineated in CTO. The
“trajectories” of the tumor boundary pictorially show the extent
of tumor movement and allow us to specify patient specific
margin in accounting for the intra-fraction organ motion.

can be integrated into radiation treatment planning and
delivery at different levels. At the lowest level, the 4D
images can be employed to determine the extent of tumor
movement on a patient specific basis and the information
can then used to design the CTV margin and the radia-
tion portals to accommodate the motion. Figure 5 shows
an example of lung patient, in which tumor boundaries at
3 distinct respiratory phases are plotted. We have re-
ferred to this type of treatment as “3.5-dimensional”
radiation therapy. The 4D information can also be used
for guiding breath-hold or gated radiation therapy. There
is also strong interest in using the 4D data to establish a
4D patient model and then to carry out a 4D radiation
therapy plan. These are the subjects of the following 2
sub-sections.

Breath-hold and respiratory gating

Various methods have been worked out to counter-
act respiratory motion artifacts in radiotherapy imaging.
Among them are breath-hold, respiration gating, and 4D
or tumor-tracking techniques.’>%737>% Breath-hold
techniques either actively or passively suspend the pa-
tient’s respiration and treat the patient during this inter-
val. Deep inspiration breath-hold, active breathing con-
trol (ABC) (which forces shallow breathing and thereby
“freezes” the tumor motion for a small part of the treat-
ment time’?), and self-held breath-hold are suitable for
different types of therapy targeting different cancers.
Different types of equipment, such as stereotactic
frames, fiducial tracking systems, timers, respirometer,
RPM, or interlocks, may be needed depending on the
method of breath-hold.

Respiration-gating methods involve tracking the pa-

tient’s natural breathing cycle and periodically turning
the beam on when the patient’s respiration signal is in a
certain phase of the breathing cycle (generally end-inhale
or end-exhale). The patient’s respiration is continuously
monitored and the beam switches off as the tumor moves
out of the target range. Gated radiation therapy can offset
some of the motion but requires specific patient partici-
pation and active compliance. In gated treatment, it is
required that the CT images used for treatment planning
faithfully represent the actual treatment situation. While
gated CT acquisition at the treatment respiratory phase is
possible, our gating protocol proceeds by picking up the
CT data at an appropriate phase from the patient’s 4D CT
acquired using the method described above. The gating
interval is typically centered at end-expiration because of
the increased reproducibility at this point, and spans
20-30% of the breathing period to provide a reasonable
duty cycle. Treatment plans are optimized for this phase
range by planning on an averaged composite of the scans
within the interval, and using maximum- and minimum-
intensity pixel views to incorporate intra-gate margins.
The averaged, maximum-intensity and minimum-
intensity composites for a lung patient are displayed in
Fig. 6.

Tumor tracking

Similar to the establishment of a 3D geometric
modeling based on traditional CT data, the availability of
4D imaging information makes it possible to build a
patient specific 4D model. Figure 7 shows the the 4D
model for a lung patient.”” In obtaining the models, a
BSpline deformable registration technique (see Rigid
and Deformable Image Registration section below) was
used to register different phases of the 4D CT. Ideally,
organ motion represented by the 4D model can be incor-
porated into the radiation treatment plan optimization to
overcome the adverse effect of respiratory motion on
IMRT delivery.”® A few groups” ' have explored the
feasibility of MLC-based tumor tracking. However, the
interplay between different phases has been ignored dur-
ing the plan optimization in most of these studies. Webb
has presented a technique to model the dosimetric effect
of elastic tissue movement when modulated beams are
delivered.'”! In general, the quadratic inverse planning
objective function becomes

F= 22 EWk[dk Sdi(f, t)] )

where d is prescribed dose for kth structure, w, is the
1mportance factor, and dk (7, 1) is the calculated dose in
voxel i at time ¢, and the summation over ¢ represents the
integral dose to ith voxel. For 4D planning, it is neces-
sary to know the path of each material coordinate during
the treatment, which involves registering the voxels in
different respiratory phases. This can be achieved by
using a deformable registration algorithm. The optimi-
zation of the above objective function or alike?>!'2-10¢
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Fig. 6. Composite scans of a 4D CT lung patient. (a) Average
pixel; (b) maximum-intensity pixel; (c) minimum-intensity
pixel. The maximum-intensity pixel composite reveals the mo-
tioextent of hyperdense tissue (e.g., lung tumor), while the
minimum-intensity pixel view provides the motion range of
hypodense regions (e.g., lung air volume).
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can proceed in a similar fashion as conventional 3D
inverse planning to derive the optimal trajectories of the
movements of the MLC leaves. An aperture-based opti-
mization'”’ 1% seems to be more adequate for dealing
with the organ motion.”®

4D methods propose to track the tumor with the
radiation beam as the tumor moves during the respiration
cycle. These techniques require acquisition of some form
of respiration signal (infrared reflective markers, spirom-
etry, strain gauges, video tracking of chest outlines, and
fluoroscopic tracking of implanted markers are some of
the techniques employed to date), which is assumed to be
correlated with internal anatomy motion. Fluoroscopy
and the cine model electronic-portal-imaging device
(EPID) have been proposed as a means for real-time
guidance.''%!'"* While tumor tracking seems to be the
ultimate goal of 4D radiation therapy, the real challenge
is clarifying whether the 4D model is repeatable at the
time of fractionated treatments, and determining how to
correctly synchronize the MLC movements with the pa-
tient breathing. Real-time imaging and/or adaptive ap-
proaches will likely play a role in this aspect and the
issue will surely need more research for many years to
come.

INTER-FRACTION ORGAN MOVEMENT

Current techniques in dealing with inter-fraction organ
movement

Uncertainty in patient setup has long been known as
a limiting factor to conformal radiation therapy. Cur-
rently, the accuracy of patient setup is verified by mega-
voltage (MV) radiograph acquired with either radio-
graphic film or EPID.''*'> The patient’s bony
landmarks are used to guide patient alignment. Poor soft
tissue contrast and often unclear projection of the bony
anatomy are major problems of the approach. To im-
prove the situation, planar kV x-ray imaging has been
implemented in a variety forms.''°~'!'3 While these sys-
tems show significantly increased contrast for bony
structure differentiation, observing soft-tissue detail re-
mains problematic and correction of daily organ motion
is still challenging. Attempts have been made to use CT
imaging to facilitate the patient setup process. Along this
line, the offline adaptive-radiation-therapy (ART) strat-
egy''® and in-room CT approach''” have been studied.
The former method aims to partially compensate for
organ motion by carrying out multiple CT scans in
consecutive days in the first week of treatment. The
image data are then employed to construct a patient
specific PTV model from the composite of the CTVs
with inclusion of statistical variations of the observed
motions. While beneficial, the approach is hardly an
ideal solution for dealing with the inter-fraction organ
motion. It relies on establishing a statistical ensemble of
all possible setup scenarios under a strong assumption
that a limited number of off-line CT scans can ade-
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Fig. 7. (a) The BSpline grid superimposed on lung contours. (b) On each node, deformation is represented by arrows,
where arrow length is proportional to the deformation.

quately describe the inherently complex, often unpredict-
able inter-fraction organ motion. Even when it is achiev-
able, the ART margin is not optimized on a daily basis
and there is still room for further improvement. An
integrated CT/LINAC combination, in which the CT
scanner is located inside the radiation therapy treatment
room and the same patient couch is used for CT scanning
and treatment (after a 180° couch rotation), should allow
more accurate correction of interfractional setup errors.
Some major radiotherapy vendors provide options to
install a CT scanner in the treatment room. The overall
precision of EXaCT Targeting™ from Varian has been
evaluated by Court ef al.''” However, the approach as-
sumes a fixed relationship between the LINAC isocenter
and the CT images and relies heavily on the mechanical
integrity of the 2 otherwise independent systems. In-
creased capital cost and prolonged imaging and treat-
ment are other concerns.

Other patient localization techniques available in-
clude ultrasound-based methods, video-based surface
tracking, on-board cone-beam CT or kV x-ray imaging,
CyberKnife and Tomotherapy, etc. For prostate radiation
therapy, on-line ultrasound imaging has gained substan-
tial interest''"®~'?° but in practice has been found suscep-
tible to subtle sources of error and inter-user variability.
On-board CBCT holds promise to become a robust in-
tegrated on-line imaging technology that can yield un-
ambiguous soft-tissue detail at the time of treatment.
Furthermore, CT numbers correlate directly with elec-
tron density, thereby providing the potential for recon-
struction of the actual dose delivered on a daily basis, in
addition to simple anatomic structure alignment. The
details of emerging CBCT will be presented in the next
section. The robotic CyberKnife™TM from Accuray
Inc. (Sunnyvale, CA) represents another promising tech-

nology. The system has a feedback mechanism in which
motion of the CTV, determined through the Accutrak
infrared-x-ray-correlated imaging system, can be fed
back to the robot to track the CTV.'?! However, while
this improves the duty cycle, there is a finite time be-
tween measuring tumor position and arranging the com-
pensation for motion. Helical tomotherapy is an alterna-
tive means of delivering IMRT using a device that
combines features of a linear accelerator and a helical CT
scanner.'??> The commercial version, the HI-ART IITM,
can generate CT images using the same MV radiation
beam that is used for treatment. Because the unit uses the
actual treatment beam as the x-ray source for image
acquisition, no surrogate telemetry systems are required
to register image space to treatment space. Objective
measures of noise, uniformity, contrast, linearity, and
spatial resolution, and comparison with that of a com-
monly utilized CT simulator, have recently performed by
Meeks et al.'*?

CBCT for patient localization

CBCT based upon flat-panel technology integrated
with a medical linear accelerator has recently become
available from linac vendors for therapy guidance. The
volumetric images may be used to verify and correct the
planning patient setup in the linac coordinates by com-
paring with the patient position defined in treatment plan.
Both kV and MV beams have been utilized for the
application. The former typically consists of a kV-source
and flat-panel combination mounted on the drum of a
medical accelerator,'** with the kV imaging axis orthog-
onal to that of MV therapy beam. The fan-beam and
cone-beam MV CT in clinical applications have been
reported by Meeks et al.'** and Poulliot ez al.'*>, respec-
tively. It appears that the MV images contain sufficient
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Fig. 8. The fusion of the 2 types of CT and CBCT images for
a prostate case.

resolution of bone and air cavities to register them to
structures in the planning CT with millimeter preci-
sion, 124125

Currently, CBCT is primarily used for guiding the
patient setup.'?®'?” The procedure is not much different
from the current patient treatment, other than the fact that
the AP/LAT portal images are replaced by volumetric
data. In Fig. 8, we show 3D CBCT images of a prostate
case in one of the fractional treatments fused with the
patient’s planning CT image. It is seen that soft-tissue
structures and boundaries are visible to varying degrees
in the CBCT images. The patient has implanted fiducials,
which show up on both CBCT and planning CT. Our
experience indicates that the cone beam data can clearly
reveal setup error, as well as the anatomical deformations
and other physiological changes. During the patient setup
process, the 3D CBCT images are registered with the
planning CT data through the use of either manual or
automated 3D image registration software that calculates
shifts in x-, y-, and z-directions (depending on the man-
ufacturer, rotations can also be included). The move-
ments determined during the registration represent the
required setup corrections that should be applied to the
patient. Both phantom and patient studies from our group
have shown that the volumetric imaging is superior to the
conventional MV or kV AP/LAT patient setup proce-
dure. We note that, if only translational shifts are per-
missible, the level of improvement is generally within 2
mm as compared with kV AP/LAT setup procedure
(2D/2D match). However, CBCT can readily detect ro-
tational errors that may otherwise be missed by the
2D/2D match. In Fig. 9, we show the localization image
for a head phantom with kV/kV 2D/2D match and
3D/3D match (CBCT/planning CT). The latter approach
was found to be sensitive enough to identify a rotational
error as small as 2°.

In practice, much effort is needed to improve the
robustness and efficiency of the volumetric image regis-
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tration process. Furthermore, to fully utilize the volumet-
ric data, a new paradigm with seamlessly integrated
simulation, planning, verification, and delivery proce-
dure is urgently needed. Until this is realized clinically,
the volumetric imaging is nothing but an expensive ex-
tension of the already functional planar verification ap-
proach. The capital cost and other related overheads do
not seem to justify the marginal benefit if the volumetric
data is simply used for determining the patient shift in
the space. However, one should not underestimate the
potential of the volumetric imaging for the future of
radiation therapy, as it opens a new avenue (perhaps the
only avenue), for us to realize the planned dose distri-
bution with high confidence in clinical settings.

A few groups are working on deformable model
based segmentation and patient setup proce-
dures.”>!207128 When deformable registration is used,
there are a few options to achieve the registration de-
pending on whether the primary aim is to match soft-
tissue, or to align 3D bony structures. In Fig. 10, we
show a patient’s CBCT and planning CT registration
results using different registration schemes. The multiple
choices result from the fact that the dimensionality of the
patient data is much greater than that in the patient setup
procedure, and suggest that deformable registration is not
the ultimate solution to volumetric image-guided radia-
tion therapy. Nonetheless, the technique improves the
current method,'?” because it partially takes into account
organ deformation by achieving the closest overlay
match possible between the planning and CBCT data sets
according to our clinical objective, and serves as a useful
interim solution before a better integrated approach be-
comes available.

CBCT-based dose verification

Another important application of on-board volumet-
ric imaging is verification of dose delivery. We have
recently evaluated the accuracy of kV CBCT-based dose
calculation and examined if current CBCT is suitable for
the daily dose verification of patient treatment.'?>!30 A
CT-calibration phantom was first used to calibrate both
conventional CT and CBCT. CT and CBCT images of
the calibration phantom, an anthropomorphic phantom
and 2 patients (a lung and a prostate case) were then
acquired for this study. Our results indicated that the
imperfect quality of CBCT images has minimal impact
(< 3%) on the dosimetric accuracy when the intra-
fractional organ motion is small. When intra-fractional
organ motion is large and motion artifacts is severe (e.g.,
in the case of lung cancer), the dosimetric discrepancy
due to the poor image quality of current CBCT was
found to be clinically significant. Furthermore, in the
latter case, we found that it is possible to use a deform-
able registration algorithm to map the corresponding
electron density information from planning CT to CBCT
and then to proceed with conventional dose calculation.
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Fig. 9. Setup localization image for head phantom with kV/kV 2D/2D match (top) and 3D/3D CBCT match (middle).
The image shown in the bottom panel illustrates that the CBCT is a sensitive technique capable of picking up a 2°
rotational miss-match between the planning CT and CBCT.

Respiratory motion artifacts in CBCT

Superior to the common approaches based on 2
orthogonal images, CBCT can provide high-resolution
3D information of the patient in the treatment position,
and thus has great potential for improved target localiza-
tion and irradiation dose verification. In reality, however,
scatter and organ motion are 2 major factors limiting the
quality of current CBCT. When CBCT is used in imag-
ing thorax or upper abdomen of a patient, respiration
induced artifacts such as blurring, doubling, streaking,
and distortion are observed, which heavily degrade the

image quality, and affect the target localization ability, as
well as the accuracy of dose verification. These artifacts
are much more severe than those found in conventional
CT exams, in which each rotation of the scan can be
completed within one second. On the contrary, in CBCT
scan, the gantry rotation speed is much slower, typically
40 seconds to 1 minute for a full 360° scan in acquiring
the projection data, which is more than 10 breathing
cycles for most patients. In Fig. 11, we show the influ-
ence of the same motion on a regular “fast” CT scanner
and CBCT for a motion phantom, where it is clearly seen
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Fig. 10. Image registration of CBCT and planning CT based on bony structure matching, soft tissue matching, and
deformable registration. Different matching techniques emphasize on different aspect of the multidimensional problem.
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Fig. 11. (a) Motion phantom for CT and CBCT simulation study. The left circle moves diagonally with an amplitude

of 1.5 cm and a period of 3.52 seconds. (b) Simulated sinograms and their corresponding reconstructed images with

standard FBP algorithm when the circles are stationary. (c) and (d) show the sinograms and their corresponding

reconstructed images for 1 s/rotation acquisition (conventional CT scan speed) and 40 s/rotation acquisition (on-board
CBCT scan speed), respectively.
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Fig. 12. (a) Phantom and images reconstructed with motion correction for CT and CBCT settings. The 3 images

represent the reconstructed image of stationary phantom (left), the conventional “fast” CT (middle), and the CBCT

(right). (b) Horizontal profiles through the moving circle for the reconstructed CT (left panel) and CBCT (right panel)

images shown in the middle and right of (a). The profiles are in blue. For comparison, the profiles for the stationary

phantom (left panel) and images reconstructed without motion artifacts removal mechanism are also plotted in each case
(black and red curves, respectively).

that the motion artifacts are much greater than that in a
fast scanner.

In the last decade, considerable effort has been
devoted to finding solutions to remove motion artifacts
and to obtain time-resolved medical images. Wang and
Vannier'?! presented a patient-motion estimation and
compensation technique for helical CT systems. Willis
and Bresler'*? cast the motion artifact problem as a
time-varying tomography problem and required special-
purpose hardware to optimally sample the spatially and
temporally band-limited CT signal space. A parametric
model for the respiratory motion was used in MRI, and
the motion artifacts were successfully reduced by mod-
ifying the reconstruction algorithm.'** Crawford et al.'**
brought the concept into CT imaging, and derived an
exact reconstruction formula for motion compensation
for CT scans. Generally, motion correction algorithms
that assume a motion model work well when the motion

conforms to the model, but have limited success when it
does not. As described above, 4D CT has been developed
in radiation oncology application to explicitly account
for the respiratory motion. The 4D CT can be used to
derive a patient-specific deformation field and then in-
corporated into the CBCT filtered-backprojection (FBP)
image reconstruction process.'>> The algorithm was
tested with simulations at different settings correspond-
ing to conventional CT and CBCT scan protocols, with
translational motion and more complex motion, and with
and without Gaussian noise. In Fig. 12, we show the
result for the motion phantom depicted in Fig. 11.'%°
Because the motion model is directly derived from the
patient images, it should be more accurate than other
artificial modeling, and therefore more efficient motion
correction is expected. In addition to this approach,
Sonke et al.'*® developed a CBCT procedure consisting
of retrospective sorting in projection space, similar to
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that used in 4D CT. The subsets of projection data are
then reconstructed into 4D CBCT dataset. To achieve a
sufficient temporal resolution, however, this will require
slowing down the gantry rotation. The assumption of
periodicity of the respiratory motion is also necessary. Li
et al."®" have recently established a novel 4D CBCT
reconstruction formalism, in which the reconstruction of
a phase will consider not only the projections corre-
sponding to that phase but also those of other phases. By
incorporating information from other phases, the efficacy
and quality of 4D CBCT images are substantially im-
proved. Zeng et al."*® proposed a method to estimate the
parameters of a non-rigid, free-breathing motion model
from a set of projections of thorax that are acquired using
a slow rotating CBCT scanner.

RIGID AND DEFORMABLE IMAGE
REGISTRATION

Development of an effective image registration
technique has been one of the most important research
areas. Depending on the mathematical nature of the
transformation, image registration is divided into rigid
and deformable registrations. In rigid transformations, it
is assumed that the geometry of the object is identical in
the 2 input images and no distortion occurs in the image
acquisition process. A rigid transformation consists of 6
degrees of freedom: 3 displacement parameters and 3
rotational parameters. Deformable registration, on the
other hand, is more complicated and entails the modeling
of voxel dependent distortion. Clinically, the need for a
robust image registration algorithm to compare/fuse im-
ages representing the same structures imaged under dif-
ferent conditions or on different modalities is ever in-
creasing because of the extensive use of multi-modality
imaging and the emergence of new imaging techniques
and methods.

Computer-based rigid image registration has gained
widespread popularity in the last decade and is used in
routine clinical practice. In this approach, the matching
of the 2 input images is formulated into an optimization
problem and the best registration of the 2 images is
obtained by iteratively comparing various possible
matches until no better registration can be found. The
search for the optimal match of the 2 input images is
usually gauged by a ranking function constructed based
on some physical considerations. Depending on the na-
ture of the input images, the formulation of the problem
can be highly complicated. Court and Dong'*® used a
rigid transformation for the correction of tissue displace-
ment. A deformable procedure based on the finite ele-
ment model (FEM), in which images are described as
blocks of elastic materials on which forces apply, was
proposed by Bharath er al.'*° and Brock et al.'*' In this
approach, the parameters that control the behavior of the
elastic material and are responsible for the conversion of
forces into local deformations of the elastic material are
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Young’s elastic modulus and Poisson’s ratio. Although
powerful, the model has the drawback that values of the
elasticity and density constant for various tissues are not
readily available and have to be found by a trial and error
procedure. The method also relies on using complicated
software to generate a FEM mesh and masks of the
involved structures. Schreibmann and Xing have pro-
posed a general narrow-band approach for deformable
registration.”> Depending on the problem, modeling of
individual voxel movement can also be made using ei-
ther B-splines,”® thinplate splines'**'**, optical flow
algorithms,'** or fluid flow algorithms.'*> Spline inter-
polation is a relatively simple approach and our experi-
ence with the algorithm suggested that the free-form
registration is stable and accurate for dealing with IGRT
image registration problems.'*® An improvement to this
method can be achieved by using a spline model with the
smoothness of the deformation field assured by the in-
terpolation between a grid of fixed control points. A
simple method along this line is to deduce the spline
coefficients from a set of user-defined control points, as
was done by Fei e al.'"*’ and Lian ez al.'* in warping
and registration of MR volumes. Coselmon et al.'*® used
a similar technique to study the accuracy of mutual-
information-based CT registration of the lung at exhale
and inhale respiratory states.

To facilitate the computer decision-making process,
image pre-processing or user interaction may be re-
quired, especially when dealing with a deformable image
registration. The use of homologous anatomic landmark
pairs on the 2 input images or the control points is an
example of this. In reality, the user must have a detailed
understanding of the patient anatomy and the character-
istics of the 2 modalities in order to accurately identify
the control points on both images. The point pairs are
usually obtained interactively with the user repetitively
exploring the input image sets and each time trying to
locate a point in both of them. Due to the 3D nature, the
process is rather tedious and difficult to perform. Schreib-
mann and Xing'* have developed a general method to
facilitate the selection of control points for both rigid and
deformable image registrations. Instead of relying on the
interactive selection of homologous control point pairs
on both model and reference images, in the proposed
approach the user needs only to identify some small
control volumes on the model image in a somewhat
arbitrary fashion. This new way of image registration
eliminates the need for the manual placement of the
homologous control points and allows us to register the
2 images accurately and efficiently. The method was
applied to both rigid and non-rigid image registration
problems and our results indicated that the registration is
reliable and provides a valuable tool for intra- or inter-
modality image registration. In Fig. 13, we show the
registration result of a rectal cancer patient who has
undergone both CT and FLT-PET scans. The increased
robustness and confidence in the registration and the
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Fig. 13. Sagittal, coronal, and axial views of the CT and FLT-PET registration. In addition to the checkerboard display,

a 3D view of the registration is also presented, where an excellent coincidence is observed between the bony structures

revealed in CT (white) and PET images (orange). The right 2 panels of the 2nd row show the convergence behaviors

of our method and the conventional method for 50 independent calculations. Our method leads to reproducible shifts in

X-, y-, and z-directions, and the conventional approach based on the information contained in the whole image entity
leads to large variations in the shifts.

increased speed of calculation, especially in the case of
the deformable registration, are important features of the
new technique. Compared to the manual rigid registra-
tion, this method eliminates the nuisance of the control
point pair selection and removes a potential source of
error in registration. Compared to the automated method,
the technique is more intuitive and robust, especially in
the presence of image artifacts.

CLINICAL EXPERIENCE WITH IGRT

Clinically implemented IGRT techniques at Stan-
ford include 4D CT, 4D PET, Varian OBI (both planar
and CBCT), gating, and Accuray CyberKnife. Several
image-guided clinical protocols are under investigation.
4D CT/PET information are used in about 40% of the
thorax and upper abdomen cases for patient specific
tumor margin definition in 3.5D radiation therapy or for
treatment planning of gated radiation therapy. CBCT is
mainly applied for patient setup in the treatment of
head-and-neck, and prostate and other pelvic diseases.
For these sites, the CBCT image quality is reasonable to
visualize soft tissues, but the quality is generally notably
inferior to that of the state-of-the-art multi-slice fan beam
CT scanner. Scan truncation artifacts because the patient
shadow does not fit on the detector and/or organ motion
often cause Hounsfield unit calibration problems. While
this does not seem to influence the image registration, the
use of CBCT for dose calculation should proceed with
caution. Our initial experience indicates that, when com-

pared with traditional CT-based calculation, the dosimet-
ric error is typically less than 3% for prostate or head-
and-neck cases but could be significantly greater in the
thoracic region. Comparison between cone beam data
and portal image derived setup errors show only slight
differences (< 2 mm). However, we should note that the
differences are derived purely based on the use of man-
ufacturer-provided image-fusion software, which often
emphasizes the high-intensity voxels in bony structures.
The next step is to implement soft-tissue based setup
corrections clinically. In reality, volumetric data contain
much more information compared to planar images, and
CBCT promises to be more useful in the future when it
is better integrated with treatment planning and delivery
systems. An ideal integration would be to use volumetric
image-derived information to “tweak” or re-optimize the
treatment plan. This work is still in progress at Stanford.

As another example of IGRT treatment, we describe
our phase I and II pancreatic tumor dose escalation
protocol. The aim is to use CyberKnife to target pancre-
atic tumors more precisely and to limit the toxicities
associated with treatment. In a phase I study, we treated
patients with a single fraction of 15, 20, and 25 Gy to
unresectable pancreatic tumors using the Cyberknife ste-
reotactic radiotherapy (SRT) system (Accuray).'”® To
track tumor movement, we implant fiducial seeds percu-
taneously into the pancreatic tumor. Using the Accuray
Synchrony platform, a model in which the position of the
internal fiducials is correlated with the patient’s respira-
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Fig. 14. FDG-PET images of a pancreatic patient before and after radiation therapy.

tory motion is developed. The Cyberknife is able to make
real-time corrections to compensate for tumor movement
during respiration. Prior to treatment, patients underwent
4D planning CT scans. Using this data set, we are able to
visualize how the pancreatic tumor moves/deforms
through respiration and compensate for these dynamic
changes.">! Minimal acute gastrointestinal toxicity was
observed even at the highest dose. All patients who
received 25 Gy had no further local progression of their
tumor until death. In a follow up phase II study, a cohort
of 19 patients were treated with 45-Gy conventionally
fractionated radiation therapy using IMRT to the pan-
creas and regional lymph nodes followed by a 25-Gy
Cyberknife stereotactic radiotherapy boost to the primary
tumor.'>® An excellent rate of local control with this
therapy was confirmed. Because of the rapid progression
of systemic disease, we did not observe a significant
improvement in overall survival as compared to historic
controls. However, most patients had a clinical benefit
(decreased pain, increased activity) and decreased serum
tumor marker for pancreatic cancer (CA-19-9) following
therapy. To document that SRS truly resulted in an
anti-tumor effect, we routinely obtain FDG-PET/CT
scans before and after treatment. Figure 14 is an example
of one such study. There was intense metabolic activity
of the pancreatic tumor prior to therapy with a near
complete resolution of FDG uptake in this patient 4

weeks following therapy. The technological challenge
for IGRT to minimize toxicity in this clinical scenario is
the precision delivery of high-dose radiotherapy. This
cannot be accomplished without taking into account the
respiratory associated motion of pancreatic tumors. This
movement takes place in multiple planes and can result
in tumor displacement of up to 1-2 cm. Furthermore,
tumor and organ deformation during respiration must
also be compensated for during therapy.

SUMMARY

With the development of IMRT during the 1990s,
radiation therapy entered a new era. This new process of
treatment planning and delivery shows significant poten-
tial for improving the therapeutic ratio and offers a
valuable tool for dose escalation and/or radiation toxicity
reduction. The improved dose conformity and steep dose
gradients necessitate enhanced precision and accuracy in
patient localization and spawn the development of IGRT,
in which various metabolic and anatomical imaging tech-
niques are integrated into the radiation therapy process.
The overall goal of IGRT is to target tumors more
accurately while better sparing the normal tissues. Much
recent effort is focused on removing the uncertainty in
the definition of the target volume and in the determina-
tion of the position of mobile and often deformable
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organs. Biological imaging described in this article will
allow us not only to delineate the boundary of the tumor
volume based on the tumors’ biological characteristics
but also to map out the biology distribution of the cancer
cells, affording a significant opportunity for BCRT treat-
ment in the future. Developments of effective 4D CT/
PET techniques will provide effective means for us to
understand the temporal dependence of the involved
structures and design the best possible strategy for tar-
geting the moving tumor. Integration of various imaging
tools for off-line and on-line application is also of para-
mount importance, enabling us to ensure the planned
dose distributions can be realized in the clinical setting.
With the newly available IGRT tools, physicians will be
able to optimize radiotherapy accuracy and precision by
adjusting the radiation beam based on the actual posi-
tions of the target tumor and critical organs during radi-
ation therapy planning and treatment. We should men-
tioned that IGRT is still in its infancy and many technical
issues remain to be resolved, such as the establishment of
a robust deformable registration method, auto-mapping
of the contours outlined on the planning CT to CBCT or
to different phases of 4D CT, and management of the
sheer volume of acquired image sets (both 4D CT/PET
and CBCT). However, it is believed that much of these
technical hurdles will be resolved with time, and that
IGRT will become the standard of practice in the future
through the effort of researchers around the world.
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Abstract
Kilovolt (kV) CBCT based on flat-panel technology integrated with linear accelerator has
recently become available from linac vendors for therapy guidance. Currently, the system
is primarily utilized to guide the patient alignment. As an advanced tool of obtaining a
patient’s 3D representation, CBCT also affords an effective means for us to examine the
actual dose distribution to be delivered or already delivered to the patient on a daily basis.
Before this can be implemented clinically, the accuracy of kV CBCT-based dose
calculation must be evaluated and some logistic issues related to the application need to
be addressed. Indeed, image quality of current CBCT is not as good as conventional
diagnostic CT due to the scatter and organ motion artifacts, which may lead to dosimetric
inaccuracy. This work is aimed to investigate the feasibility and accuracy of CBCT-based
dose calculation and to propose a deformable electron density mapping (DEDM) method
that is potentially useful to facilitate CBCT-based dose calculation. In the proposed
DEDM technique, the CBCT and planning CT are first registered by using a deformable
image registration model. The electron density distribution is then mapped from the
planning CT to the CBCT. The CBCT with the mapped electron density information is
useful for more accurate CBCT-based dose calculation. For disease sites where intra-
fractional organ motion is not an issue, this study indicates that CBCT can be employed
directly for dose calculation and the results agree with the planned dose distributions to
within 1~2%. The use of DEDM further reduces the dosimetric inconsistency and
provides a sanity check of the CBCT-based dose calculation. While the true solution for
using CBCT to calculate dose lies in the improvement of image quality, the DEDM
approach seems to afford a useful interim technique for better CBCT-based dose

calculation.

Key word: CBCT, IGRT, Dose verification, Deformable registration, IMRT
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1. Introduction

Modern radiation therapy techniques, such as 3D conformal radiotherapy (3DCRT) and
intensity-modulated radiation therapy (IMRT), provide unprecedented means for
producing exquisitely shaped radiation doses that closely conform to the tumor
dimensions while sparing sensitive structures. As a result of greatly enhanced dose
conformality, more accurate beam targeting becomes an urgent issue in radiation therapy.
In current practice, large uncertainties exist in tumor target localization due to intra- and
inter-organ motions during the course of radiation treatment. As thus, large safety
margins around the tumor targets and sensitive structures are introduced to cope with the
otherwise insoluble patient localization problem. The use of non-optimal margins
compromises the patient care and adversely affects the treatment outcome (1-7). The
need to improve targeting in high precision radiation therapy has recently spurred a flood
of research activities in image-guided radiation therapy (IGRT) (7-11).

CBCT based upon flat-panel technology integrated with a medical linear
accelerator has recently become available from Linac vendors for therapy guidance. The
volumetric images may be used to verify and correct the planning patient setup in the
linac coordinates by comparing with the patient position defined in treatment plan. Both
kV and MV beams(12-14) have been utilized for this application. The former typically
consists of a kV-source and flat-panel combination mounted on the drum of a medical
accelerator(8-11, 15), with the kV imaging axis orthogonal to that of MV therapy beam.
In addition to guide the patient setup process, CBCT data acquired prior to the treatment
can, in principle, be used to recalculate or verify the treatment plan based on the patient
anatomy of the treatment day. The recalculation starts with the intended fluence maps
from the patient’s treatment plan, whereas the verification is done by using the fluence
maps measured at the exiting sides of the incident beams. If CBCT-based dose
calculation is accurate enough (say, with an accuracy within 1~2%), this will provide a
valuable option for us to predict/assess the patient dose routinely. In reality, because of
the presence of organ movement/deformation, it is conceivable that the dose distributions
delivered to the patient are usually different from fraction to fraction. It is paramount to

be able to monitor the actual patient dose for each fraction as well as the accumulated
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doses to the target and sensitive structures while the fractional treatment proceeding. This
will not only give physician more confidence about the treatment but may, in future,
afford us an effective means to adaptively modify the patient’s treatment plan during the
course of a radiation therapy based on the dose that has already been delivered.

The accuracy of MV fan-beam and cone-beam CT has recently been assessed by
Langen et al (16) and Poulliot et al (14). The potential of its counterpart, the kV CBCT,
for dosimetric calculation has, on the other hand, not been examined systematically.
Different from conventional fan beam CT, CBCT covers a much larger field of view
(FOV) in the longitudinal direction, and scatter poses a much severe problem in the
resultant image. In addition, the gantry rotation speed is limited to ~1 min. by IEC
regulation, which makes the CBCT less prone of motion artifacts. The deteriorated image
quality raises serious concern about the dosimetric reliability of CBCT-based dose
calculation. The purpose of this work is two-fold: to evaluate the dosimetric accuracy of
kV CBCT-based dose calculation and to explore a strategy, coined as the deformable

electron density mapping technique, for improving the CBCT-based dose calculation.

II. Method and Materials

A. Data acquisition

The onboard imager (OBI) integrated in a Trilogy™ medical linear accelerator (Varian
Medical Systems, Palo Alto, CA) is used in this work to acquire CBCT images. The kV
OBI system is capable of obtaining low-dose, high-resolution radiography, fluoroscopy
and CBCT. The system is mounted on the treatment machine via robotically controlled
arms, which operate along three axes of motion. A 150 kV X-ray tube with maximum 32
ms pulse length for continuous irradiation and maximum 320 ms pulse length for single
pulse is designed for generating high-resolution images from a moving gantry. The spot
of the tube is located at 90° to the MV source and 100cm from the radiation axis of the
accelerator. A 39.7cm X 29.8 cm amorphous silicon flat-panel X-ray image detector
(Varian PortalVision™ aS1000) mounted opposite the kV tube is used to acquire digital
images with a pixel matrix of 2048 X 1536. Using the OBI system, the CBCT data can be
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acquired in two modes: full fan mode and half fan mode. In the full fan mode, the beam
central axis passes through the detector center and a full projection of the scanned patient
is acquired for each acquirement angle. Total 675 projections are taken during the whole
364° gantry rotation with a maximum field of view (FOV) about 25 cm in diameter and
17cm in length. The data acquisition time is about 60 second and the reconstruction time
for 340 slices of 512X512 CBCT images with a voxel size of 0.5mm’ is also about 1
minute on a PC. The half fan mode is designed to obtain larger FOV. In this mode, the
detector is shifted laterally to take only half of the projection of the scanned patient for
each acquirement angle. Total about 965 projections are taken during the 364° gantry
rotation and a FOV of 50 cm in the axial plane and 15c¢m in the longitudinal direction can
be achieved. The data acquisition and reconstruction time for 512X512 CBCT images
with a voxel size of 0.95mm’ using this mode is about double compared with the full fan
mode. The averaged dose for a head and neck CBCT scan is about 2 cGy, and 3¢Gy for

an abdominal scan.

B. Calibration of relative electron density

To use CT or CBCT for radiation dose calculation, it is required to relate the Hounsfield
Unit (HU) of the scanner with the actual electron density. A CT-phantom, Catphan-600
module CTP404 (Phantom Laboratory, NY), was used for the calibration of planning CT
(GE Discovery-ST PET/CT scanner, Milwaukee, WI) and CBCT. The gantry rotation
speed of the 16-slice Discovery-ST scanner is 0.5sec/rotation. The CTP404 has a
diameter of 150 mm and contains 17 different sizes of inserts with seven different tissue
substitute materials, air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon,
respectively. Their relative electron densities ranged from 0 to 1.866. A cross section of
the phantom is shown in figure 2. The calibration of a CT scanner involves acquiring CT
images, obtaining average HUs for each inserting materials, and plot the HU as a function
of the relative electron density. For CBCT calibration, the only difference from the
conventional CT is that it is necessary to calibrate separately for full and half fan modes
because the beam geometry and characteristics of the two types of scanning modes are

different.
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In order to test the stability of the CBCT calibration curve with time, the phantom
was repeatedly scanned every week for two months. The obtained HU vs relative electron

density curves were compared to assess the HU fluctuations with time.

C. Phantom study

CT and CBCT images of the Catphan-600 phantom were acquired using the procedure
outlined in Sec. II.A. The phantom was placed on a platform that can be set to one-
dimensional cyclic motion with a number of speeds. The axis of the cylindrically shaped
phantom, along which the phantom moves cyclically, was angled from the central axis of
the CBCT gantry rotation by about 15° in order to study the motion influence on
CT/CBCT. The movement of the phantom produces motion artifacts in the images and
allows us to evaluate the performance of CBCT-based dose calculation in the presence of
organ motion. The full fan mode was used to scan the phantom. CT and CBCT images of
the phantom were acquired with and without motion. In the former case, the peak-to-peak
amplitude of the motion was 0.5 cm in the left-right direction and the period was 4s. In
addition, different sizes of homogeneity cylindrical phantoms, with a diameter of 10.8,
16, and 26.6 cm, respectively, were scanned to evaluate the scatter influence on image
quality.

To quantify the difference in the image quality of the CT and CBCT images, we
first analyzed the HU distribution for all the acquired images. The influence of phantom
motion and scatter radiation on the HU distribution was investigated. The CT and CBCT
images were imported to a Varian Eclipse treatment planning system for dosimetric
comparison study. For planning and evaluation purpose, a hypothetical spherical target
with a diameter of 5cm was created at the center of the phantom and a single 5 X 5cm’
6MV photon beam was used to irradiate the target. A simple beam configuration was
used here because, in this way, the results are more intuitively interpretable. Seven plans,
corresponding to the different sets of CT images, were generated using the same target
and beam configuration. The pencil beam convolution dose calculation algorithm
implemented in Varian Eclipse treatment planning system was adopted for dose

calculation. The resultant isodose curves, dose profiles and DVHs were compared.
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D. Patient study
Three prostate cancer patients were selected for the evaluation study of CBCT-based dose
calculation and to demonstrate the feasibility of the proposed deformable electron density
mapping (DEDM) technique (see next sub-section) for improved dose calculation
accuracy. For all three cases, the targets included the PTV, consisting of the prostate
gland with a margin of 6mm, and the seminal vesicles. The critical structures were
rectum, bladder and femoral heads. IMRT plans using five 15MV photon beams with
gantry angles of 35°, 110°, 180°, 250°, and 325° (in IEC convention) were adopted for the
three cases. All the plans were normalized to deliver a prescription dose of 78Gy to 99%
the prostate PTV and no less than 50Gy to the 98% of seminal vesicles in 39 fractions.
After the patients were setup using the current clinical procedure, CBCT images
of the patients were acquired using the half fan mode. The CBCT images were
transferred to an Eclipse treatment planning system (Varian Medical Systems, Palo Alto,
CA). For each case, the IMRT planning parameters generated for the patient’s treatment,
including beam configuration, MU settings, and MLC files, were employed to recalculate
the dose based on the CBCT data. The CT and CBCT-based treatment plans were then

compared.

E. Deformable electron density mapping

The dosimetric inaccuracy of CBCT-based dose calculation primarily arises from the
inability of the CBCT technique to provide accurate HU or relative electron density
distribution. The genuine solution to the problem lies in the improvement of the CBCT
acquisition technology so that high quality images can be acquired. While this endeavor
is still on-going, here we propose an interim solution for dealing with the problem. Under
the assumptions that the HU or relative electron density distribution is known from
planning CT and an acceptable geometric registration between CT and CBCT is
achievable by a deformable registration, we propose to map the electron density in the
planning CT onto the daily setup CBCT and then carry out the dose calculation. The
CBCT with mapped electron density, referred to as modified CBCT, possesses the
anatomical information of CBCT and yet the electron density information of the planning

CT. Dose calculation based on the modified CBCT allows us to compute more
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accurately the delivered dose with the patient in his/her setup position. The mapping
process is described as follows.

A free form spline (BSpline) deformable model (17-21) was employed to register
the planning CT and CBCT and map the deformed electron density from planning CT to
CBCT. The method was used for several IGRT related projects in our group and others
and its simplicity and accuracy have been demonstrated (18, 21-24). Briefly, in the
BSpline model, a lattice of user-defined nodes is overlaid on the image. Each node
contains a deformation vector, whose components are determined by optimizing a metric
function that characterizes the goodness of the registration. The metric is a function of the
BSpline nodal parameters. In this work, a voxel-based normal cross correlation (NCC)
metric was used. A suitable set of node deformations was determined using the gradient-
based algorithm L-BFGS(18-20), which is known for its superior performance in large-
scale optimization problems. The optimizer iteratively varies the nodal displacements to
optimize the metric. The deformation at any point of the image is calculated by spline
interpolation of closest nodes values. Unlike other spline models, the BSplines are locally
controlled, such that the displacement of an interpolation point is influenced only by the
closest grid points and changing a lattice node only affects the transformation regionally,
making it efficient in describing local deformations. After the deformable registration, the
HU in each voxel in planning CT was mapped to the corresponding point in the reference
CBCT to produce the modified CBCT images.

The feasibility of DEDM technique was evaluated by using the three patients
mentioned above. For this purpose, the CT and CBCT images were registered using the
BSpline model. The targets and sensitive structures contoured on the planning CT were
copied to the CBCT using the deformable model. For each patient, the treatment plan
parameters were employed to recompute the dose distribution based on the patient’s
modified CBCT. The resultant isodose curves and DVHs were evaluated and the level of

improvement in dosimetry due to the use of DEDM was assessed.

III1. Results
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A. Calibration of CT and CBCT

The relation between kV HU distribution of CBCT and relative electron dosimetry was
established by using a Catphan-600 CT phantom following the procedure described in
Sec. II.B. The calibration curves for planning CT, half fan and full fan CBCT modes are
shown in figure la. Figure 1b compares the calibration curves obtained with an interval
of 1 week during a period of two months for full fan CBCT. No significant variations
were found in the calibration data, which is similar to what have been observed for MV
(16). The stability of the kV CBCT and electron density calibration is a good indicator of
the HU number integrity and the overall performance of the CBCT system.

B. Phantom study

Figures 2a to 2d show the same transverse slices of the CT and CBCT images of the
Catphan-600 phantom with and without motion. The first two panels are the CT and
CBCT images of the phantom in the absence of motion, and the second two show the
same with the phantom motion “switched on”. It is seen that the quality of CBCT images
is worse than that of the conventional planning CT, especially in the presence of motion.
The HU profiles of the four images along the two orthogonal lines (lines A-A and B-B as
marked in figure 2) are plotted in figure 3. It is found that the HU profiles of the planning
CT and CBCT normally agree to within 10% in the static situation. On the other hand,
when the motion is “switched on”, CBCT shows a much greater level of artifacts (figure
2d) and the HU difference between the conventional CT and CBCT is aggravated, with
the maximum difference reaching several hundred HUs.

Because of the cone beam geometry, the influence of scatter radiation in CBCT is
much severe as compared to that of a fan beam geometry. In general, X-ray scatter
reduces image contrast, increases image noise and may introduce reconstruction error
into CBCT. Figure 4 plots the HU profiles along a central axis of three different sized
homogeneous cylindrical water phantoms. As expected, the fluctuation range of HU
value increases with the phantom size, indicating the increased influence of scatter
radiation.

Figures 5, 6 and 7 present the dosimetric results calculated using a single 6 MV 5

X 5cm? photon beam. Figures 5a to 5d depict the dose distributions in a transverse slice
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calculated based on the four sets of images given in figure 2. Figures 6a and 6b compare
the dose profiles along the two orthogonal lines (lines A-A and B-B in figure 2), and
figure 7 compares the DVHs of the target for the four different situations. From these
results we find that the dose calculated using planning CT agrees with that of CBCT-
based calculation to within 1.0%, indicating that it may be acceptable to use kV CBCT
for dose calculation if no organ motion presents. However, when phantom motion is
involved, the motion-induced artifacts significantly influence the HU distribution and
thus the accuracy of CBCT-based dose calculation. For this simple phantom case, we find
that the discrepancy between the planning CT- and CBCT-based calculations is about
3%, which is clinically significant. The motion artifacts existing in current CBCT limit
the direct use of CBCT for dose calculation when intra-fractional organ motion is not

negligible.

C. Patient study

Figures 8a to 8c show the same transverse slices of the planning CT, CBCT, and
checkerboard image resulting from the deformable registration of the two sets of images
for one of the prostate cases. The modified CBCT obtained by mapping the HUs from the
planning CT to CBCT is shown in figure 8d. Our previous studies have indicated that a
registration accuracy better than 2mm is achievable by using the BSpline deformable
model (18,19). As can be seen from the checkerboard overlay, the registration between
CT and CBCT is excellent. Figure 9 shows the isodose distributions for the three
calculations based on planning CT, CBCT, and modified CBCT for the same case. A
comparison of DVHs of PTV, prostate, seminal vesicles, bladder and rectum for this case
is presented in figure 10. Figures 11 and 12 present the DVHs for the targets and
sensitive structures for the other two cases. While there is significant dosimetric
discrepancy between the planning CT- and modified CBCT-based plans, the results
obtained using the CBCT or modified CBCT is similar. For all three cases, we found that
the modified CBCT-reconstructed prostate dose agrees with the planned one to within
3~4%. However, the dosimetric differences in the PTV and seminal vesicles are quite

significant, which could be as large as ~10% for the PTV and ~50% for the seminal
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vesicles. Similar observation was also made by the MD Anderson group in a study using
daily CT on-rail (9, 25). For the rectum and bladder, the discrepancies between planned
and reconstructed doses could be greater than 8%. We note that for all the structures
(except the seminal vesicle in the first case), the differences between the CBCT- and
modified CBCT-based calculations are all less than 2%. For the seminal vesicle in the
first case, the DVH difference is somewhat large. We attribute this to the relatively small
volume of the seminal vesicle and a possible structural mismatch between the CT and
CBCT.

In general, the difference between the planned and CBCT-reconstructed dose
distributions arises from two factors: (i) patient positioning error and organ
deformation/displacement; and (ii) relative electron density difference between the CT
and CBCT images. The small discrepancy between the doses computed using CBCT and
modified CBCT suggests that, in the prostate cases, the second factor is small and it may
be acceptable to directly use CBCT for dose calculation. The dosimetry is predominantly
determined by the accuracy of patient setup and the level of interfractional deformation

/displacement of the involved target and sensitive structures.

IV. Discussion

The feasibility and accuracy of using kV CBCT to calculate dose have been investigated
with phantoms and three clinical prostate cases. In the absence of motion artifacts, it
seems to be acceptable to directly use CBCT for dose verification calculation. Otherwise,
extra caution is required to avoid significant dosimetric inaccuracy. To cope with the
problem of deteriorated imaging quality of CBCT, a DEDM method has been proposed to
map the electron density information from the patient’s planning CT to the setup CBCT
with a deformable image registration. In IGRT, since the registration has to be done for
the purpose of patient setup, the computational overhead of introducing DEDM is
minimal. Before an effective CBCT image quality improving technique is in place,
DEDM provides a useful interim solution to the problem. In the presence of organ
motion, our phantom study indicated that significant dosimetric errors could be resulted.

Recent developments of 4D CT and 4D CBCT (21, 26, 27), in conjunction with the
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proposed DEDM method, may provide a valuable solution to the problem of CBCT-
based dose calculation in the regions of thorax and upper abdomen.

Dose distributions computed based on CBCT or modified CBCT represent the
dose to be delivered to the patient because the CBCT was acquired prior to the patients’
treatments after the patients were repositioned/shifted using the patient setup procedure in
current practice. In the prostate IMRT plans, the inherent dosimetric error resulted from
the use of CBCT images is found to be small. However, the dosimetric error caused by
the inter-fractional organ motion/deformation is not insignificant, as revealed by the dose
recalculation results given in the last section. A few groups are working on deformable
model based segmentation and patient setup procedures (9, 25, 28, 29). When deformable
model is used, one can go beyond simply aligning the 3D bony structures to achieve a
registration based on matching soft-tissue organ(s). The problem here becomes multi-
dimensional depending on which structure to align during the patient setup process. The
multiple choices resulting from the fact that the dimensionality of the patient data is much
greater than that available in the patient setup procedure and suggest that deformable
registration is not the ultimate solution to volumetric image-guided radiation therapy.
However, patient positioning based on deformable model improves the current body-
structure-based patient alignment method since it partially takes into account organ
deformation by achieving the closest overlay match possible between the planning and
CBCT data sets according to our clinical objective, and provides an improved positioning
technique. We should emphasize that, even when 3D volumetric based deformable
registration is available in the future, the problem of patient positioning will not disappear
as relative organ deformations may well persist. A possible solution to accommodate
various factors mentioned above is for us to re-optimize or tweak the IMRT plan based
on the patient’s setup CBCT. Indeed, in order to fully utilize the CBCT volumetric data, a
new paradigm with seamlessly integrated simulation, planning, verification, and delivery
procedure is urgently needed. Until this is realized clinically, the volumetric imaging is
nothing but an expensive extension of the existing planar verification approach.

Finally, we emphasize that a pre-assumption of the proposed DEDM
approach is that the image registration between CT and CBCT is sufficiently accurate to

avoid wrong assignment of electron density information. Generally, the accuracy of
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deformable registration may depend on the quality of CBCT. One could naturally expect
that, at a certain level of intensity mismatch between the CT and CBCT, the deformable
model may break down. In a parallel study, we have recently studied the influence of
noises on the accuracy of rigid and deformable image registration and developed a
multiscale image registration technique for the registration of medical images that contain
significant levels of noise(30). As usually, after image registration, it is helpful to have an

experienced physician or physicist to double check the registration results.

V. Conclusion

Onboard CBCT provides useful volumetric anatomy information for patient positioning
verification. When used for dose verification calculation, it is required to have a reliable
HU to electron density curve. Our phantom and patient studies have indicated that, in the
absence of motion artifacts, the dosimetric accuracy seems to be acceptable for the
purpose of dosimetric sanity check. Our motion phantom study indicated that the
dosimetric errors may be more pronounced when intra-fractional organ motion is present.
In this situation, a direct use of CBCT for dose calculation is not recommended. The use
of a reliable deformable registration would allow us to incorporate the electron density
distribution from the planning CT and to calculate the dose more accurately. The
proposed DEDM approach affords a practical means to estimate the dose to be delivered

or already delivered to the patient based on the setup CBCT.
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Figure Captions

Fig. 1. (a)The calibration curves (Hounsfield number vs relative electron density) for
planning CT, half fan and full fan mode CBCT; (b) the variation of calibration curves
with time for the full fan CBCT.

Fig. 2. The CT and CBCT images with and without motion for the Catphan-600: (a)
planning CT in the absence of phantom motion; (b) CBCT in the absence of phantom
motion; (¢) planning CT with moving phantom; and (d) CBCT with moving phantom.

Fig. 3. HU profiles of planning CT and CBCT images (see figure 2) along the A-A line
(panel a) and B-B line (panel b).

Fig. 4. HU profiles for three different sized homogeneous cylindrical water phantoms.
The diameters for large, medium and small phantoms are 10.8, 16.0 and 26.6 cm,

respectively.

Fig. 5. Dose distributions in a transverse slice calculated based on the four sets of CT data
shown in figure 2: (a) planning CT; (b) CBCT; (c) planning CT with a motion; and (d)
CBCT with a motion. In all four situations, a 5 X 5cm’ single field plan was used to
irradiate a spherical hypothetical target with a diameter of Scm located at the phantom

center.

Fig. 6. Comparison of the dose profiles along the two orthogonal lines shown in figure 2
for the Catphan-600 phantom: (a) profile along the A-A line; (a) profile along the B-B

line.

Fig. 7. Comparison of the target DVHs calculated based on the four sets of CT data

shown in figure 2 for the phantom case.
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Fig. 8. CT, CBCT and modified CBCT images for the first prostate case: (a) planning
CT; (b) daily CBCT; (c) checkerboard overlay of CT and CBCT after the deformation
registration; and (d) modified CBCT.

Fig. 9. Dose distributions in a transverse slice calculated based on the: (a) planning CT;

(b) CBCT; and (c¢) modified CBCT for the prostate case.

Fig. 10. Comparison of DVHs of the prostate, PTV, rectum and bladder obtained based
on the planning CT, CBCT and modified CBCT images for the first prostate case.

Fig. 11. Comparison of DVHs of the prostate, PTV, rectum and bladder obtained based
on the planning CT, CBCT and modified CBCT images for the second prostate case.

Fig. 12. Comparison of DVHs of the prostate, PTV, rectum and bladder obtained based
on the planning CT, CBCT and modified CBCT images for the third prostate case.



(a)

Rel. Electron Density

Rel. Electron Density

2.0

1.8 |-

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0

0.8

0.6

0.4

0.2

0.0

—e—CT
- CBCT (Full Fan)
l --+-- CBCT (Half Fan) i

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
CT (CBCT) HU

- Week 1 (Reference)
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

o> e e x + X

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

HU

(b)

Figure 1



Figure 2



HU Value

HU Value

600

—7T1r r r r r 1 r 1 1 - 1 r I 7
— Static CT T
400 | - Static CBCT -
| Moving CT ; ,’ t g
200 | —Moving CBCT b : i
0 .
-200 -
-400 | § .
-600 |- § .
-800 |- 3 -
-1000
-1200 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
-10 -8 -6 -4 -2 0 2 4 6 10
Position (cm)
(a)
600 —7T1 r r . 1 r r 1~ T * T r T 7
| ——static CT ‘ |
400 - static cBCT 1
I Moving CT h b
200 |-— Moving CBCT i
ol i 4
-200 =
-400 | .
L | i
-600 ; -
| ! i J
i 4
-800 | | | -
i | o] 1
-1000 _’4} 2 N ———
-1200 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
-10 -8 -6 -4 -2 0 2 4 6

Position (cm)

(b)

Figure 3



HU Value

600 T T T T T T T T
T T T T T T T

----Large
— Medium

400 -

200

-200 |-

-400 |

-600 |-

-800 |-

-1000

-1200 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Position (cm)

Figure 4



Figure 5



Dose (cGy)

Dose (cGy)

220

200
180
160
140
120
100
80
60
40
20

360
340
320
300
280
260
240
220
200

180

160
140
120
100
80
60
40
20

-20

—7 1 ‘+ T ' 1 ‘* T ‘' T ‘'t T Tt T ‘* T Tt T 7T
| -----—-Planning CT ]
- CBCT g
[ - CT with motion ]
L —— CBCT with motion i
0 2 4 6 8 10 12 14 16 18
Position (cm)

(a)
r - r . 1r. 1 1. 1+ T * T * T T T 7T
- B Planning CT
A CBCT
. CT with motion
‘ —— CBCT with motion

-
-

i
[N I AN I N N 74 N I A N N N I I A

o

2 4 6 8 10 12
Position (cm)

Figure 6

14 16

18

N
o



Relative Volume (%)

100

80

60

40

20

—— CBCT with motion

50 100 150 200
Dose (cGy)

Figure 7



Figure 8



Figure 9



Relative Volume (%)

110

100 |
9 |
80 |
70|
60 |
50 |
40|

30 |-

20

10

I ! I ! I ! I
Prostate

Figure 10

| —— Planning CT
| - - - CBCT
----- Modified CBCT
L | L | L | L | L | L | L | L | |
0 20 40 60 80 100 120 140 160
Dose (cGy)

180 200 220 240




Relative Volume (%)

110

100 |
90 |
80 |
70 |
60 |
50 |
a0 |
30 |

20
10
0

1 7
Prostate

- —— Planning CT
- --- CBCT
- Modified CBCT

0

20

40

60 80 100 120 140 160 180 200 220 240

Figure 11

Dose (cGy)




Relative Volume (%)

110 ————mF—"—F—"—F—T—F—FT—T7—T—T—T—T—T—7—"—7—"—
100 i Prostate
i \‘r\ ‘\ ‘\\ "..\
R PTVS\
0 Ry No- Rectum ‘4
BB s .
80 Ht o™y
K \\ N \
. )
70 | )l S }-} i
L 'I\ .‘\':I. "
60 -1+ AN sV i
B Y . S ..-]
50 | \ *,Bladder Y "“-»_\ T b
B \- N “?\ .‘. \-\ :':
30 [ \".\ .'\-\ .\\\'.\ :3“
B -h'»_‘ "\.\ -'\.\ "
i Trme . .'\'} K
20 |- . T S :
| —— Planning CT T TR s :
10 |- -~ CBCT SEEEEsaee M. \a
.-~ Modified CBCT e ;.\
0 PR T RSN RN R 1 1 1 1 il | 1

0 20 40 60 80 100 120 140 160 180 200 220 240
Dose (cGy)

Figure 12



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, MAY 2006 1

Multiscale Deformable Registration

Dana Paquin*, Doron Levy, and Lei Xing

Abstract— Multiscale image registration techniques MAGE registration is the process of determining
are presented for the deformable registration of med- the optimal spatial transformation that maps one
ical images. These techniques are shown to be par-jna4e to another. Image registration is necessary,

ticularly effective for registration problems in which f | hen i f th biect
one or both of the images to be registered contains or example, when Images or the same object are

significant levels of noise. Experiments using B-splines taken at different times, from different imaging
deformable registration models demonstrate that or- devices, or from different perspectives. The two

dinary deformable registration techniques fail to pro-  jmages to be registered, called the fixed and moving
duce accurate results in the presence of significant images, are the input to the registration algorithm,

levels of noise. Further experiments in which classical d th tout is th timal t f tion that
denoising algorithms are applied prior to registration an € outputis the optimal franstormation tha

show that registration fails in this case for high levels Maps the moving image to the fixed image. Ideally,
of noise, as well. The hierarchical multiscale image the transformed moving image should be identical

decomposition of E. Tadmor, S. Nezzar, and L. Vese, to the fixed image after registration. Applications of

A multiscale image representation using hierarchical ; i i i -aui iati
(BV. L*) decompositions, Multiscale Modeling and image registration include image-guided radiation

Simulations, vol. 2, no. 4, pp. 554-579, 2004, is pre_therapy (IG_RT)’ image-guided_surgery, functional
sented, and multiscale image registration algorittms MRI analysis, and tumor detection, as well as many

are developed based on the multiscale decomposition. non-medical applications, such as computer vision,
An accurate registration of noisy images is achieved by pattern recognition, and remotely sensed data pro-
obtaining a hierarchical multiscale decomposition of cessing (see [4] and the references therein).

the images and registering the resulting components. | istrati del lassified into t
This approach enables a successful registration of im- mage registration models are classitied nto two

ages that contain noise well beyond the level at which Main categories according to the transformation
ordinary deformable registration fails. Further, an  type: rigid and deformable. Rigid image registration

iterated multiscale registration algorithm is presented models assume that the transformation that maps the
which improves the accuracy and computational ef- moving image to the fixed image consists only of

ficiency of other registration methods. The accuracy t lati d rotati hile def bl del
and efficiency of the multiscale registration techniques ransiations and rotations, whiie deformablé models

are demonstrated using both digital phantom and allow localized stretching of images. While rigid
clinical case studies in two and three dimensions. models are sufficient in certain circumstances, many
Index Terms— Image registration, deformable reg- registration problems, particularly in medical ap-
istration, noise, multiscale decomposition. plications, are non-rigid. For example, respiratory
motion causes non-rigid, or deformable, distortion
of the lungs and other organs. As another exam-
ple, image-guided neurosurgery procedures require
Asterisk indicates corresponding author. deformable registration of pre- and intra-operative
*D. Paquin is with the Department of Mathematics,images of the brain [14], [19]. For additional appli-

et s dséa')‘ford' CA 94305-2125 (e-mailcations of deformable registration, see [11], [16],
paquin@math.stanford.edu). .

D. Levy is with the Department of Mathematics,[17] Qnd the references thereln._

Stanford University, Stanford, CA 94305-2125 (e-mail: This paper extends our previous work [13], a
dlevy@math.stanford.edu). multiscale approach to rigid registration in the pres-

L. Xing is with the Department of Radiation Oncol- f noi def bl . . bl
ogy, Stanford University, Stanford, CA 94305-5847 (e-mail€NC€ Of NOISe, to deformable registration problems.

lei@reyes.stanford.edu). Our approach is to decompose the images that

I. INTRODUCTION
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are to be registered into a hierarchical multiscalee defined, for example, in terms of vector-valued

decomposition. Registration is then obtained witfunctionsf = (f1, fo, f3) representing the RGB-

a hierarchical approach in which the various scaledlor scales. For the medical imaging applications

are registered consecutively, with each addition#that we are interested in, images are in fact given in

scale registration providing a fine tuning to theéerms of discrete data, and the functibrmust be

previous registration. obtained via interpolation. We will not discuss this
The structure of this paper is as follows. Inconstruction here, but assume that an interpolation

Section 1l, we provide a brief overview of themethod has been chosen.

image registration problem and discuss deformable Any registration algorithm has three main com-

registration techniques. In Section Ill, we describponents:

the problem of deformable image registration in 1) Thetransformation modeivhich specifies the
the presence of noise, and briefly discuss standard way in which the moving image can be trans-

denoising technigues. In Section IV, we review formed to correspond to the fixed image.
the hierarchical multiscale image decomposition of 2) The distance measureor metric, used to
[18], and we present three multiscale image regis- compare the fixed and moving irr,1ages.

tration algorithms based on the decomposition. In 3) The optimization processhat varies the pa-
Section V, we demonstrate the failure of ordinary rameters of the transformation model in such

deformable _registration tech_niques When_ one or a way that the transformation produced by the
more of the images to be registered contains noise, registration process is optimal.

as well as the failure of ordinary techniques even . ) o o
when the noisy images are denoised using classiGalven & distance measuf@ : (L*(R”))* — R and

filtering methods prior to registration. The accufV0 Imagesf(z),m(x) € L*(R?), the solution of
racy and efficiency of our multiscale registratior{hf3 _re_g|st_rat|on problem is given by the following
techniques are studied in Section V with severdfiinimization problem:

image registration experiments in both two and

three dimensions. Concluding remarks are given in ¢ = argmin D(f(z), m((x))), 1)
Section VI. :R2R2
where v is in the specified space of transforma-
Il. MATHEMATICAL FORMULATION OF THE tion models. Examples of commonly used distance
REGISTRATION PROBLEM measures are mean squares, normalized correla-

Given afixedand amovingimage, the registration tion, and mutual information. Examples of typical
problem is the process of finding aptimal trans- transformation models are rigid, affine, polyno-
formationthat brings the moving image into spatiaimial, and spline transformations [12]. To minimize
alignment with the fixed image. While this problemD( f, m(v)), we must choose an optimizer which
is easy to state, it is difficult to solve. The maircontrols the minimization. The most commonly
source of difficulty is that the problem is ill-posed,used optimization techniques in image registration
which means, for example, that the problem magre gradient descent and regular step gradient de-
not have a unique solution. For a detailed overvieacent methods. The implementation of the regis-
of the image registration problem and various imageation algorithm works in the following way: at
registration techniques, see [12]. each iteration, the distanc® between the two

To formulate the registration problem mathematimages is computed. The specified transformation is
ically, a two-dimensional gray-scale imageis a then applied to the moving image, and the distance
mapping which assigns to every pointc 2 ¢ R? between the images is recomputed. In theory, this
a gray valuef(z) (called the intensity value of the process continues until the distance is minimized
image at the point:). We will consider images as (or maximized in certain cases), though in practice
elements of the spacg?(R?). Color images can a stopping criterion is often applied.
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Historically, image registration problems havealefine the spline-based deformation modelflet
been classified as eithaigid or non-rigid As {(z,y) | 0 < 2z < X, 0 < y < Y} denote the
most of the organs in the human body are natomain of the image volume. Letdenote &, xn,
confined to rigid motion only, much of the currentmesh of control points; ; with uniform spacing.
work in medical image registration is focused ofmhen the B-spline deformation model can be written
the deformable case. Although deformable images the 2-D tensor product of 1-D cubic B-splines:
registration clearly allows for more flexibility in
the types of images and applications in which it 2 2
can be used, deformable registration techniques oz, y) :Z ZBl(JJ)Bm(y)am,jer, 2)
require significantly more computation time than =0 m=0
rigid registration techniques, and involve the de-
termination of a very large number of parameterg\.'
In this paper, we shall focus on the problem of®
deformable registratiorin the presence of noise.

herei = |z/n,] — 1 ,j = ly/n,] — 1, and B,
presents théth basis of the B-spline:

- | Bo(u) = £ (1 -’ |
A. Deformable registration techniques (15

Spline-based transformation models are among  Bi(u) = 6(3U3 —6u” +4)
the most common and important transformation 1 .
models used in non-rigid registration problems Bs(u) = 6(*3@63 +3u? +3u+1) .
[6]. Spline-based registration algorithms wsmtrol
points in the fixed and moving images and a spline
function to define transformations away from thes€hanging the control pointy; ; affects the trans-
points. The two main spline models used in registrdormation only in a local neighborhood af; ;.
tion arethin-plate splinesandB-splines Thin-plate The control pointsa: act as parameters of the B-
splines have the property that each control poispline deformation model, and the degree of non-
has a global influence on the transformation. Thaigid deformation which can be modeled depends on
is, if the position of one control point is perturbedthe resolution of the mesh of control points A
then all other points in the image are perturbed darge spacing of control points allows modeling of
well. This can be a disadvantage because it limiggobal non-rigid deformation, while a small spacing
the ability of the transformation model to modebf control points allows modeling of local non-
localized deformations. In addition, the computationigid deformations. Additionally, the number of
time required for a thin-plate spline-based registr&ontrol points determines the number of degrees of
tion algorithm increases significantly as the numbdreedom of the transformation model, and hence,
of control points increases. See [3] for an overviewhe computational complexity. For example, a B-
of thin-plate splines. spline deformation model defined by i@ x 10

In contrast, B-splines are only defined in thegrid of control points yields a transformation with
neighborhood of each control point. Thus perturt® x 10 x 10 = 200 degrees of freedom. Thus there
ing the position of one control point affects thds a tradeoff between the model flexibility and its
transformation only in a neighborhood of that pointcomputational complexity.
As a result, B-spline-based registration techniquesIn Section V, we demonstrate the accuracy of B-
are more computationally efficient than thin-plateplines deformable registration techniques for the
splines, especially for a large number of contralegistration of non-noisy images. Finally, we note
points. See [9] and [10] for a detailed descripin passing that there are additional deformable
tion of B-splines transformation models. In thigegistration techniques such as elastic models [2],
paper, we shall use deformable registration algeiscous fluid models [5], and finite element models
rithms based on B-spline deformation models. TgY].
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I1l. REGISTRATION IN THE PRESENCE OF NOISE a few of the most common and computationally
simple denoising techniques.
. . . Spatial filtering is the traditional approach to
In imaging, the term noise refers to random fluCzeoying noise from images. Spatial filters use
tuations in |nten§|ty values that occur during imagg, o assumption that noise occupies the higher re-
cgpturehtra}nfsm|33|_c)n, or processhmg., and that Mgy,ns of the frequency spectrum, and thus attenuate
distort the information given by the image. Imageign spatial frequencies. Local spatial filtering is
noise is not part of the ideal signal and may b process in which the value of a given pixel in

caused by a wide range of sources, such as deteqliqé filtered image is computed by applying some

sensitivity, environmental radiation, transmission era'\lgorithm to the pixel values in a neighborhood of

rors, discretization effects, etc. In this paper, wg,, given pixel. Typical implementations of spatial

will study the problem of image registration in thegyrers include mean filtering, median filtering, and
presence of high levels apecklenoise (though we 4 ssian smoothing. See [20] for an overview of
have conducted experiments demonstrating that Wssical spatial filtering techniques.

obtain similar results for other types of noise). See
for example, our results on rigid registration [13].

Speckle noise, or multiplicative noise, is a type og
noise that occurs commonly in medical imaging. |
particular, speckle noise is often found in ultrasounﬁ1
images [1]. It is defined by the following model.
We let s(z) denote the actual image, arfdx) the
observed image. Then

A. Speckle noise model

' Mean filtering computes the value of each output
ixel by computing the statistical mean of the neigh-
orhood of the corresponding input pixel. That is,
e intensity value of each pixel is replaced with the
ean, or average, value of its neighbors (including
itself). The neighborhood size is typically taken to
be a 3x 3 or a 5x 5 square grid (or kernel); larger
neighborhoods result in more severe smoothing. In
this paper, we use a8 3 square kernel to perform
f(z) = s(x) +n(0,0) - s(2), () mean filtering. Applying a mean filter to a noisy

wheren(0, ) is uniformly distributed random noise Mage reduces the amount of variation in gray-
of mean 0 and variancg We add speckle noise oflevel intensity between pixels. Although this filter
increasing variance to the image as illustrated in 1S computationally easy to implement, it is sensitive
Figure 4. For a given noise variande we denote [© the presence of outliers.

the noisy imageS;. In Section V, we present the Median filtering computes the value of each
registration results obtained upon registering thgUtput pixel by computing the statistical median

noisy imagessS; with the original imagel for of the neighborhood of the corresponding input
increasing values of. pixel. The median filter has two main advantages

over the mean filter. First, the median is a more

robust average than the mean, and thus is less
B. Classical denoising techniques sensitive to a single very unrepresentative pixel in

Since we are considering the problem of imaga neighborhood. Second, since the median value

registration in the presence of noise, it is natural tewust actually be the value of one of the pixels in
consider whether or not the application of standartie neighborhood, the median filter does not create
denoising algorithms prior to registration enables @nrealistic pixel values when the filter straddles an
successful deformable registration of noisy imagegdge. For this reason, the median filter is much more
Image denoising is a fundamental problem in imageffective at preserving sharp edges than the mean
processing, and there has been much research ditigr. As with the mean filter, we use a>33 square
progress on the subject. As our primary interest kernel to perform median filtering.
the problem of image registration of noisy images, Convolution with a Gaussian kernel is another
and not denoising, we do not focus on the generabmmonly used spatial filtering technique. The 2-
problem of image denoising, but instead considelimensional Gaussian kernel has the form
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R wherel[g]ly.s == [|Vg]lz:.

G(z,y) = 2726— 223 (4) Define theJ-functional J(f, ) as follows:
g

whereo is the standard deviation of the distribution,

which we assume has mean zero. The Gaussian

filt_er computes a weighted average _Of each pixel here\ > 0 is a scaling parameter that separates
neighborhood, with the average weighted towar e 7.2 and BV terms. This functionall(f, \) was

the value of the central pixels, in contrast to th?htroduced in the context of image processing by

{pea(\/ filter's unlfotrr;:]Iy wel_g?tet(_j averagif:. IEts.ecaudin, Osher, and Fatemi [15]. Lét,, v,] denote
lon V, we present the registration results obtaineflo inimizer of.J(f, \). The BV componentys,

upon applying classical denoising techniques tgaptures the coarse features of the imggevhile
noisy images prior to registration.

the L2 componentyp,, captures the finer features of
f such as noise. This model is effective in denoising
IV. MULTISCALE REGISTRATION ALGORITHMS  images while preserving edges, though it requires

A. The multiscale decomposition prior knowledge on the noise scaling

. , , : .. Tadmor, et al. proposed in [18] an alternative
The multiscale registration techniques to be dis oint of view in which the minimization off(f, \)

cussed in this paper are based on the multiscale ifm-.

. . ) . is interpreted as a decompositigh = uy + vy,
age representation using the hierarchicalV, L2) where upA ey edgeps of g?]d o Aextraéts

decompositions of [18]. This multiscale decom- I .
position will provide a hierarchical expansion ofthe textures off. This interpretation depends on the

an image that separates the essential features > faIeA, since texture at scalg consists of edges

the image (such as large shapes and edges) fr(\)/vmen viewed under a refined scale. We refer to

the fine scales of the image (such as details arﬁj} =f—uas the residual of the decomposition.
; LT N : . pon decomposing® = uy + vy, we proceed to

noise). The decomposition is hierarchical in th%ecom osan as follows:

sense that it will produce a series of expansions P A '

of the image that resolve increasingly finer scales,

and hence include increasing levels of detail. We

will eventually apply the multiscale decompositionvhere

algorithm to the problem of image registration in

I = ik Al + v, 6

Uy = U2) t+ V2),

the presence of noise, and will demonstrate the [uax, van] = arginf J(vy, 2X).
accuracy of the multiscale registration technique for utv=vx
noisy images. Thus we obtain a two-scale representation fof

We will use the following mathematical spacegjiven by f = uy +usy, Wwhere nowvsy = f—(ux+
in the decomposition algorithm. The space of funcusgy ) is the residual. Repeating this process results
tions of bounded variationBV, is defined by: in the following hierarchical multiscale decomposi-
tion of f. Starting with an initial scale. = A\, we
obtain an initial decomposition of the image
BV ={f | lfllev:=

sup [A| 7 f(- +h) — f(-)l|r < o0} f = uo + vo,
h+£0

H —1,00 X
We will also use the Sobolev spatié [0, vo] = arginf J(f, o).

with norm given by: utv=f
We then refine this decomposition to obtain
120 o= sup [ DA 2T,
g gl Vj = Ujt1 + Ui+,
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with the Neumann boundary conditions:

[Uj+17 ’Uj+1] = arginf J(’Uj7 )\02j+1), 7=0,1,...

ut+v=v; % B O (9)
After k steps of this process, we have: on g
fo= w4 (6) where 012 is the boundary of the domaift and

n is the unit outward normal. We thus obtain an
= Up + Ul —+ V1 k

expansionf ~ u;, where theu,; are constructed
= up+up+uz+ v P ¥ J;] J J

- as approximate solutions of the recursive relation
= wodus 4.+ up + v, given by the following elliptic PDE:

which is a multiscale image decompositigh ~ 1 Vit

wo+uy +. . .+uy, with a residuaby,. Ask increases, %+l — IAjr1 div JET Vul? (10)

the u;, components resolve edges with increasing 7

scales)\;, = \o2F. _ —idiv Vu;

Implementation of the multi-scale decomposition: C2) Ve + Vu2 )
As described in [18], the initial scal®, should

capture the smallest oscillatory scalefingiven by

1 1 To numerically implement the method, we cover
ST < |Ifllw-1.00 < IV (7) the domain2 with a grid (z; := ih,y; := jh), and

0 0 discretize the elliptic PDE of Eq. (10) as follows:.
However, in practice, we may not be able to deter-
mine the size of||f||-1.«, SO we determine the
initial choice of Aq experimentally. Following [18],
for the applications presented in this paper, we wiffi.i = fij i
use o = 0.01 and )\j = /\()2j. " 1 Uig1,5 — Usj

We follow Fhe numenc;al alggnthm of [18] fc_:r 242 _\/62 T (Diotti;)? + (Doyti ;)2
the construction of our hierarchical decomposition. -
In each step, we use finite-difference discretization 1 Ui j — Ui—1,5 ]

(11)

of the Euler-Lagrange equations associated with 2h2 Ve + (D_pui ;)2 + (Doyui—1,5)?
the J(vj, A\j41) to obtain the next termy;,, in r

the decomposition of the imag¢. Due to the +L2 Ui j+1 — Ujj
singularity when|Vu,| = 0, we replaceJ(f,\) 2h% | /€ + (Dozuij)? + (Dyyui )
by the regularized functional*(f, \) := 1 [ Ui i — g i1
o i,J (2
2h? | \/e + (Dogui,j—1)? + (D—yui)? |

inf ORI + / VEFIVaP dady}, (8)
utv= Q

and at each step, we find the minimizey of J¢.

The Euler-Lagrange equation o (f, ) is whereD,, D_, and D, denote the forward, back-
ward, and centered divided differences, respectively.
To solve the discrete regularized Euler-Lagrange
uy — 1div< Vuy —finQ equations (11), we use the Gauss-Siedel iterative
2\ VeE2+ [Vuy 2 ’ method to obtain:



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, MAY 2006 7

Thus Cy,(A) will denote thek!" scale of the image
A, and Ci(B) will denote thek™ scale of image

ulth = fi; (12) B.
1 Uiy j — ufjrl
2
2h \/62+(D+IUﬁj)2+(Doyu§fj)2 B. Multiscale registration
r In this section, we present multiscale image reg-
1 uT“f‘l —un ) . . . .
i i—1,j istration techniques that are based on the hierar-

T on2 \/EQJF(D_W?J,)Q + (Doyu?_lj)Q phical multiscale decomposition of [18] revievyed
' ’ in Section IV-A. For the general setup, consider

1 upi g — uf;rl two imagesA (the fixed image) and (the moving

+ 252 5 2 s image), and suppose that we want to register image
_\/6 + (Dozui;)? + (Dyyui;) B with image A. Suppose that one or both of the

i nal n images contains a significant amount of noise. If
1 S =g . . . -

*J LY _only one of the images is noisy, we assume that it is

2n? \/62 + (Dozuf;_1)? + (D—yuj;)? | imageB. For_ each of the three al_gorithms_ prese_nted
B below, we first apply the multiscale hierarchical
decomposition to both images. Let denote the

: . umber of hierarchical steps used for the multiscale
TO. satisfy the Ne“”?a”” boundar_y conc_iltlo_ns (ggecompositions. We presented Algorithms | and I
we first reflect f outside() by adding grid lines .

. A 2 in the context of rigid registration in [13].
on all sides ofQ2. As the initial condition, we set _ . 9 9 . [ .]
w0 = f.. We iterate this numerical scheme for 1) Algorithm I. Single-node registrationtn our
nW: 0 1” N until [jun= — un=—1|| is less than single-node multiscale registration algorithm, Algo-

. . th .
some preassigned value so thﬁtf is an accurate rithm |, we register thek™ scaleC;(B) of image

approximation of the fixed point’steady solutiog. B.W'th th«_a imaged, for k =1, .. o M- we rgfer t_o
. : : this algorithm as @ne-node multiscale registration
Finally, we denote the final solutiom, :=

. . . . algorithm because in each of the: registrations
{uﬁ;" ;,;- To obtain the hierarchical multiscale de- 9 9

”» : . .nPrescribed by the algorithm, the moving image is
composition, we reiterate this process, each fi g . o .
updating f and ) in the following way: always the imageAd. That is, in the single-node
P 9 g way: algorithm, we use only the multiscale components

of the fixed imageB. Since this algorithm considers
Jnew = Jeurrent — U, (13) scales only of the noisy (moving) image, we expect
Anew < ZAcurrent- that it will be particularly successful when only one
of the images to be registered is noisy.

Recall thatC,(B) contains only the coarsest
scales of the imagé, and ask increases(Cy(B)
[;ontains increasing levels of detail (and hence,
noise) of the imageB. Thus, we expect that the
registration ofCj(B) with A should be more ac-
curate than ordinary registration for the first few
values ofk. As k increases, however, we expect

That is, at each step, we apply th¥ feurrent —
ux, 2A) minimization to the residuaf,,,rent — u

of the previous step. Taking; = \o2/, we obtain
after & steps a hierarchical multiscale decompos
tion f = uy, + ux, + ...+ uy, + vy, Where we
write uy, = u;. We call theu;, j =1,2,...,k the
components of, and thev,, the residualsFor ease
of notation, given an imag¢, we letCy(f) denote

the k" scale of the image, k = 1,...,m: that eventually the scal€’;(B) will become too
B noisy to register successfully.
b1 Upon registering C(B) with A for k =
Ci(f) = Z“k‘(f)' (14) L,2,...,m, we can estimate the actual transforma-

P tion that maps the images to one another either
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by computing a weighted average of the trangameters for the second registration. We repeat this

formations produced by these registrations, or procedure until the last scale (or desired stopping

simply by taking as the estimate of the actuadcale) is reached. That is, at each stage, we use the

transformation the transformation corresponding toutput deformation parameters from the previous

one of the coarse scale registrations. In [13], weegistration as the initial parameters for the current

showed that in the case of rigid registration, usingegistration. The iterated form of Algorithm Il is

one of the coarse scale registration transformatioasalogous, but at each stage we registekthecale

to estimate the actual transformation is sufficient faf, (B) of the moving image with thé'" component

a high degree of accuracy. Cr(A) of the fixed image. We expect the single-
2) Algorithm II: Multi-node registration:In our node iterated multiscale registration algorithm to be

multi-node multiscale registration algorithm, Algo-particularly effective when only one of the images

rithm 11, we register thek™" scale of imageB with to be registered contains significant levels of noise,

the k" scale of imaged, for k = 1,2,...m. We and we expect the multi-node iterated multiscale

refer to this algorithm as anulti-node multiscale registration algorithm to be particularly effective

registration algorithmbecause in each of the reg- When both of the images contain noise.

istrations prescribed by the algorithm, we consider

both the scales of the fixed imageand the scales V. RESULTS AND DISCUSSION

of the moving imageB. As before, we expect that A. Ordinary registration of a deformed image

registration ofCy(B) with C.(A) should be more  consider the mid-sagittal brain slice and the
accurate than ordinary registration for the first feieformed imageS, shown in Figure 1. The mid-
values ofk. As k increases, however, we expeckagittal brain slicel is taken from the Insight
that eventually the scaleSj,(A) and Cy(B) will  gegmentation and Registration Toolkit (ITK) data
become too noisy to register successfully. Sin%pository [8]. The deformed imag$ is obtained
this algorithm considers scales of both images, W8 applying a known B-spline deformation to the
expect that it will be particularly successful whenyriginal imagel. Since the deformation transfor-
both images are noisy. mation that maps the deformed imageto the
Upon registeringCy(B) with Ci(A) for k& = original image! and corresponding deformation
1,2,...,m, we estimate the actual transformatioflield are known, we can effectively evaluate the
that maps the images to one another either by comiccuracy of various deformable registration meth-
puting a weighted average of the transformationsds by comparing the output deformation fields
produced by thesen registrations, or simply by with the known deformation field. For all reg-
using one of the coarse scale registratiéNgB) istration simulations presented in this paper, we
with Ci(A) (for some smalk), as in Algorithm I yse a B-spline deformable registration technique
3) Algorithm Il Iterated multiscale registration: with a mean squares image metric and a conjugate
The accuracy and speed of convergence of Alggradient descent algorithm. However, the multiscale
rithms | and Il can be improved by implementingregistration algorithms developed in this paper are
an iterated multiscale registration algorithm, as foindependent of the registration technique used to
lows. To iterate Algorithm I, we first register theregister the images.
first coarse scal€’; (B) of the moving image with  Using a B-spline deformable registration model,
the fixed imageA. The output of this registration the image S is successfully registered with the
process is a set of deformation parameters thimbage I. In Figure 2, we compare the result of
represent the deformation transformation producebe registration process, namely the image obtained
by the registration algorithm. We then register thepon applying the optimal deformable transforma-
second scal€’y(B) of the moving image with the tion determined by the algorithm to the deformed
fixed imageA, using the output deformation param-4image, with the original imagé. Ideally, both fig-
eters from the first registration as the starting pases should be identical. Indeed, the images in Fig-
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ure 2 demonstrate that the deformable registration The results presented in Figure 5 and Table |

algorithm recovers the deformation transformatiorindicate that ordinary deformable registration tech-
In Figure 3, we display the exact deformatiomiques fail to produce an accurate registration result

field corresponding to the deformation transformawhen one of the images to be registered contains

tion between the images and S (on the left) and significant levels of noise. As expected, the level

the deformation field determined by the deformablef failure increases as the speckle noise variance

registration algorithm, and note that visually the tw@ increases. For variances greater than or equal to

deformation fields are almost identical. To quantited.2 the algorithm fails to produce any meaningful

tively compare the exact and computed deformatiaesults.

fields, and for future reference, we compute the

mean square diffgren_ce (MSD) be_twegn the field& Denoising results

For the deformation fields shown in Figure 2, the ) ) ]

MSD is 7.2 - 10~2. The minimum possible MSD _Slnge ordlnar)_/ deformable registration of the the

between two fields is 0 (corresponding to no differ10iSy images fails, we study next the effect of de-

ence between the images), and the maximum pos&RISing on the noisy image registration problem. We

ble MSD is 1 (corresponding to a large difference@PPly @ mean, median, and Gaussian convolution
filter, as discussed in Section IlI-B, to the noisy

: . . . . image Sy.¢ and register the denoised images with
B. Ordinary registration of a noisy deformed mag%he gorig?f?al imaggl In Figure 6, we illl?strate

In this section, we present the registration resulife denoised images and the deformation fields
obtained upon registering the noisy deformed iMsroquced by registering the denoised images with
agesSs with the original image! for increasing ihe original image.
noise variances. See Eq. (3). Figure 4 shows the 14 guantitatively compare the computed defor-
noisy deformed imagesis for ¢ = 0.1,...,0.8.  mation fields with the exact deformation, we com-
In Figure 5, we illustrate the deformation fields,te the mean square differences between the defor-
produced by the B-spline deformable registratiopation fields in Figure 6 and the exact deformation
algorithm upon registering the noisy deformed imgeiq in Figure 3. The mean square differences
agesS; with the original imagel. Recall that the 5. 3.0-10-1 3.2.10-1 and 4.6 - 10-'. for
actual deformation is shown in Figure 3. mean median, and Gaussian denoising techniques,

A visual comparison of the deformation fieldsegpectively. These mean square differences, com-
presented in Figure S with the exact deformatiopjneq with a visual comparison of the deformation
field in Figure 3 indicates that the deformationie|qs in Figure 6 with the exact deformation field
registration technique falls_ to pro_duce physically, Figure 3, demonstrate that the application of
meaningful results for noise varianceé greater cjassical denoising techniques prior to registration
than 0.2. To quantitatively compare the deformatiogoeg not enable successful deformable registration

fields determined by the deformable registratiops {he noisy imageS, ¢ with the original imagel.
algorithm in Figure 5 with the exact deformation '

field in Figure 3, we compute the mean square ] . ) ] )
differences (MSD) between the computed and exay Multiscale registration of a noisy deformed im-
deformation fields for each speckle noise varianc9€

0. In Table I, we present the mean square valuesNext, we demonstrate with several image regis-
for each noise variancé. For reference, we alsotration experiments that the multiscale techniques
include in the first line of Table | the MSD betweenpresented in Section IV-B accurately and efficiently
the deformation field produced by the registrationegister the noisy deformed images considered in
algorithm when the deformed image contains nB8ections V-B and V-C. Consider again the original
noise and the exact deformation field (from Sectioimage I and the noisy deformed imag#, s, and
V-A). recall that the deformation that maps the deformed
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TABLE |
THE MSDs BETWEEN THE COMPUTED(USING ORDINARY REGISTRATION TECHNIQUE$ AND EXACT DEFORMATION FIELDS
FOR INCREASING NOISE VARIANCES) FOR THE DEFORMATION FIELDS SHOWN INFIGURE 5.

5 0 0.1 0.2 0.3 04
MSD | 7.2-1073 [ 1.5-1072 | 1.9-1072 [ 33-10" T | 3.6-10"1
5 05 0.6 0.7 0.8 0.9
MSD | 43-10-1 [ 44.107T [ 45.10°1T [ 48.10°T | 5.7-10°1

(moving) image to the original (fixed) image isto registration failed to produce accurate results for
given by the deformation field in Figure 3. noise varianceg greater than 0.2, and we are able
to accurately register the deformed noisy image

1) Single-node multiscale registrationtn this : ' )
section, we use Algorithm | to register the hierarchiith variance 0.6, we conclude that the multiscale

cal scales of the noisy imag®,  with the original ;mgle-node registratiqn technigue ?s a significant
image . In Figure 7, we illustrate the hierarchicallMProvement over ordinary registration.
multiscale decomposition of the noisy imaggs,  2) Iterated multiscale registrationin this sec-
and in Figure 8, we illustrate the deformation fieldsion, we register the noisy deformed imagdg.q
produced by the single-node multiscale registratiofith the original image using (the single-node ver-
algorithm. sion of) Algorithm lIl. That is, we first decompose
In Table II, we calculate the MSDs between théhe noisy deformed imagé; ¢ into 8 hierarchical
deformation fields obtained upon registering thecales using the multiscale hierarchical decompo-
hierarchical scales of the noisy deformed imaggition presented in Section IV-A. We then register
with the original image and the exact deformatioithe first scale ofSy ¢ with 7, and use the resulting
field. transform parameters to register the second scale

The deformation fields shown in Figure 8 an®f So.e with I. This process is then iterated, at
the mean square differences in Table Il demonstrafe® 1ast stage using the transformation parameters
that the multiscale registration method is successf@Ptained by registering the seventh scalefs
for registration of the noisy deformed imags ¢ with I as the starting parameters for registering the

with the original imagel. Visually comparing the €ighth scale ofg ¢ with /. In Table I1l, we compute
deformation fields in Figure 8 with the exact deth® MSDs between the computed deformation fields
formation in Figure 3, we see that the deformatioHSing the iterated multiscale registration algorithm
fields obtained upon registering the coarse scales'$ith the exact deformation field, and in Figure 9,
the noisy deformed image with the original imag&'e |II.ustra.te the deformation field produced by the
are a good approximation for the actual deformatiofin@l iteration.

field. The MSDs indicate that the first few coarse The results presented in Table Il and Figure
scales produce the most accurate registration, @sdemonstrate that the iterated multi-scale reg-
expected. As more detail, and hence noise, is addstration algorithm is a significant improvement
in increasing scales, the registration becomes lesger ordinary deformable registration techniques.
accurate for higher scales. However, it is clear bothdditionally, the results of the iterated multiscale
from the deformation fields in Figure 8 and thealgorithm are more accurate than those obtained via
MSDs in Table Il that all scale registrations ofAlgorithm | (single-node multiscale registration),
the multiscale registration technique produce vergs indicated by the MSDs in Table Ill. However,
accurate results. Since both ordinary deformabtee main improvement of the iterated algorithm
registration of the noisy deformed image and thever the single-node multiscale algorithm is the
application of classical denoising algorithms prioimprovement in computation time. Working on a
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TABLE I
THE MSDs BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINB UPON REGISTERING THE HIERARCHICAL
SCALES OF THE NOISY IMAGE WITH THE ORIGINAL IMAGE(USING ALGORITHM [).

Scale | 1 2 3 4
MSD | 1.7-1072 | 1.1-1072 [ 95-1073 | 1.0-10~2
Scale | 5 6 7 8
MSD | 1.0-1072 | 1.1-1072 [ 9.4-10=2 | 1.0-107 T

TABLE Il
THE MSDsS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINE UPON REGISTERING THE NOISY
DEFORMED IMAGE Sg.¢ WITH THE ORIGINAL IMAGE [ USING THE SINGLENODE ITERATED MULTISCALE REGISTRATION
METHOD (ALGORITHM llI).

Iteration | 1 2 3 4
MSD 16-1072 [ 1.1-1072 [ 6.9-1073 | 6.4-10=3
Iteration | 5 6 7 8
MSD 6.3-1073 | 6.2-1073 [ 6.2-1072 | 6.2-103

Dell Dimension 8400 Intel Pentium 4 CPU (3.40 3) Increasing the noise varianceFinally, we
GHz, 2.00 GB of RAM), registering a single scaledemonstrate that the iterated multiscale registration
of the noisy deformed imagé, ¢ with the original algorithm produces accurate results for noise vari-
imagel takes an average of 84.5 seconds. The tinancesd significantly greater than those at which
required for the registration process increases witirdinary deformable registration fails. In Figure 10,
each scale, as each scale contains more detail amelillustrate the noisy deformed imag8s for very
noise than the previous scale. Thus the total timarge values of the noise varianégd = 1,...,6),
required to register each scale of the noisy deformeuhd in Figure 11, we illustrate the deformation fields
image Sp.¢ with the original imagel is approx- computed using the single-node iterated multiscale
imately 676 seconds. With the iterated multiscaleegistration algorithm (Algorithm IIl) to register
registration method, the initial registration of thehe noisy deformed imageS;s with the original
first scale of the noisy deformed image with thémage I for each ¢ illustrated in Figure 10. In
first scale of the original image takes approximatelyable 1V, we illustrate the MSDs between the com-
29.5 seconds, and each successive iteration talmeged and exact deformation fields. These results
approximately 8 seconds. Thus the total time retemonstrate that the iterated multiscale registration
quired to complete all 8 iterations of the iteratedlgorithm accurately registers the noisy deformed
multiscale registration algorithm is approximatelyjmage with the original image for noise variances
85.5 seconds. Hence we conclude that the iteratdtht are significantly greater than those at which
multiscale method is significantly more efficientordinary registration fails. Recall from Section V-
than the single-node multiscale method. Moreove that ordinary deformable registration of a noisy
the mean square differences in Table Il indicatdeformed image with a non-noisy fixed image fails
that accurate results can be achieved by iteratirigr noise variance® greater than 0.2. In Figure
the iterated multiscale registration algorithm until1l and Table IV, we demonstrate that the iterated
the fourth or fifth iteration, which further reducesmultiscale registration algorithm produces accurate
the computation time. results for noise variancésas large as 6. Moreover,
the iterated multiscale registration algorithm is more
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accurate than ordinary deformable registration wheaigorithm is successful. The corresponding MSDs
the images contain no added speckle noise. Recaik shown in Table V.
that the MSD between the exact and computed 2) Iterated multiscale registrationin this sec-

deformation field in Section V-A obtained upontion, we register the noisy deformed imagg.q
registering the non-noisy deformed imagewith  with the noisy original imagd, ¢ using (the multi-
the non-noisy original image using B-splines node version of) Algorithm IIl. That is, we first
deformable registration i§.2 - 1073, Using the decompose the noisy deformed imagig; and the
iterated multiscale registration algorithm, the MSDhoisy original imagel, ¢ into 8 hierarchical scales
between the computed and exact deformations fieldgch, using the multiscale hierarchical decomposi-
is 1.8-102. Thus the iterated multiscale algorithmtion presented in Section IV-A. We then register the
improves the accuracy of deformable registratiofirst scale ofS, ¢ with the first scale off, ¢, and
even when the images do not contain added noisgse the resulting transform parameters to register
the second scale obyg with the second scale
. . . . . of Iyg. This process is then iterated, at the last
E. Registration of a noisy deformed image with @546 ysing the transformation parameters obtained
noisy fixed image by registering the seventh scale 6f with the
In this section, we consider the case in whiclseventh scale ofl,s as the starting parameters
both images to be registered contain significafier registering the eighth scale dfy ¢ with the
levels of noise. We add speckle noise of variance 0ggghth scale offy ¢. In Table VI, we compute the
to the original imagd, and denote this noisy imageMSDs between the computed deformation fields
Ips. Our goal is to register the noisy deformedising the iterated multiscale registration algorithm
image Sp.¢ with the noisy fixed imagelys. In  With the exact deformation field, and in Figure 14,
Figure 12, we illustrate both of the noisy imagesye illustrate the deformation field produced by the
as well as the deformation field produced upofinal iteration.
registering the noisy deformed imagg.¢ with the The results presented in Table VI and Figure 14
noisy original imagely ¢ using ordinary B-splines demonstrate that the iterated multi-scale registration
deformable registration techniques. algorithm is a significant improvement over ordi-
A visual comparison of the computed deformatiomary deformable registration techniques. Addition-
field in Figure 12 with the exact deformation fieldally, the results of the iterated multiscale algorithm
in Figure 3 indicates that ordinary deformable regare more accurate than those obtained via Algorithm
istration of the noisy images fails. The MSD in thidl (multi-node multiscale registration), as indicated
case ist.4-1071. by the MSDs in Table VI. Additionally, the iterated
1) Multi-node registration: Since ordinary de- algorithm is computationally more efficient than
formable registration of the noisy images fails, wé\lgorithm II.
register the images using our multiscale multi-node 3) Increasing the noise varianceFinally, we
algorithm (Algorithm 1I). That is, we apply the demonstrate as in Section V-D.3 that the iterated
multiscale decomposition to both of the imagemultiscale registration algorithm produces accurate
Ips and Sy ¢ and register thek-th scale of Sy ¢ results when both of the images contain speckle
with the k-th scale ofly¢ for k = 1,2,...,8 (we noise of variance significantly greater than the
use m = & hierarchical steps in the multiscalelevel at which ordinary deformable registration fails.
decomposition of each image). The deformatiom Figure 15, we illustrate the deformation fields
fields obtained upon registering the scalesSgfs computed using the iterated multiscale registration
with the scales ofly ¢ are illustrated in Figure algorithm to register the noisy deformed imagg
13. A visual comparison of the deformation fieldsvith the noisy original imagels for increasing
in Figure 13 with the exact deformation field innoise variances. In Table VII, we illustrate the
Figure 3 indicates that the multi-node registratiomean square differences between the computed and
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TABLE IV
THE MSDsS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINE UPON REGISTERING THE NOISY
DEFORMED IMAGESS5 WITH THE ORIGINAL IMAGE I FOR INCREASING NOISE VARIANCES) USING THE SINGLENODE
ITERATED MULTISCALE REGISTRATION METHOD(ALGORITHM I1).

5 0 0.4 0.8 1

MSD | 1.8-1072% | 42-1073 [ 9.9-10=3 | 7.2-10~2
5 2 3 4 6

MSD | 1.4-1072 | 1.3-1072 [ 1.7-10"2 | 6.4-102

TABLE V
THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELD OBTAINEDUPON REGISTERING THE HIERARCHICAL
SCALES OF THE NOISY DEFORMED IMAGES(.¢ WITH THE HIERARCHICAL SCALES OF THE NOISY ORIGINAL IMAGEIp.¢ (USING
ALGORITHM II).

Scale | 1 2 3 4
MSD | 1.2-1072 | 1.2-1072 [ 1.0-10=2 | 1.1-10~2
Scale | 5 6 7 8
MSD | 1.2-1072 | 1.7-1072 [ 1.8-10~2 | 1.9 102

TABLE VI
THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELD OBTAINEDUPON REGISTERING THE NOISY
DEFORMED IMAGE Sp.¢ WITH THE NOISY ORIGINAL IMAGE Ip.¢ USING THE MULTI-NODE ITERATED MULTISCALE
REGISTRATION METHOD(ALGORITHM IlI).

Iteration | 1 2 3 4
MSD 1.3-1072 [ 1.2-1072 [ 1.0-102 | 1.0-102
Iteration | 5 6 7 8
MSD 1.0-1002 [ 95-10=2 [ 9.0-1073 | 8.0-10"3

exact deformation fields. These results demonstrefte Extension to three-dimensional images

that the iterated multiscale registration algorithm )
accurately registers the noisy deformed image with Finally, we demonstrate that the the multiscale
the noisy original image for noise variances signiff€gistration technique accurately registetgee-
icantly greater than those at which ordinary tectlimensionaimages. To study the three-dimensional
niques fail; recall that ordinary deformable regis(3D) registration problem, we use four-dimensional
tration failed whenonly oneof the images to be COmputed tomography (4D CT) images acquired
registered contain noise of variance 0.2. In Figurdith & GE Discovery-ST Scanner (GE Medical
16, we illustrate the noisy original and deformec®YStems, Miluakee, WI) at the Stanford Univer-
images/, and S». These images contain specklé'ty Medical Centgr. Four-dimensional corr.\put.ed
noise with variancé = 2. As demonstrated by the tomography techniques allows one to acquire im-
deformation field in Figure 15, the multi-node it-29¢ data at specified phases over several respi-
erated multiscale registration algorithm (Algorithnf20ry cycles, and then combines the data into

Ill) accurately registers these very noisy images. thrée-dimensional phase-binned images. We ob-
tained eight phase bins (i.e. eight 3D CT images)

corresponding to eight different breathing phases of
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TABLE VI

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINE UPON REGISTERING THE NOISY

14

DEFORMED IMAGESSs WITH THE NOISY IMAGE I5 FOR INCREASING NOISE VARIANCES) USING THE MULTI-NODE ITERATED
MULTISCALE REGISTRATION METHOD (ALGORITHM II1).

0 0 0.4 0.8

1

15

MSD | 1.8-1073 [ 9.1-10=3 | 3.7-10~2

4.4-1072

2.0-1072

9.1-10"2

the respiratory cycle. Each phase consists of 80 two-
dimensional images, aslices which are combined

to obtain the 3D images. The slice thickness for
each phase is 2.5-mm, and the eight breathing
phases recorded contain approximately 400 MB of
data in DICOM image format.

In Figure 17, we illustrate two corresponding
sample slices (slice 25) from the first and eighth
phases of the 4D CT data set.

To register the 3D CT images with one another
(i.e. to register each phase of the respiratory cycle
with, for example, the inhale phase), we first extend
the hierarchical multiscale decomposition of [18] to
3D images. Although the multiscale decomposition
presented in [18] was done in two dimensions
only, the hierarchical multiscale expansion in Eq.
(6) is independent of the image dimensionality. To
implement the iterated multiscale decomposition in
3 dimensions, we cover the image domé&lnwith
a grid (x; := ih,y; := jh, 2z, = kh), and letD,
D_, andD, denote the forward, backward, and cen-
tered divided differences, respectively. Then the 3D
extension of the iterated multiscale decomposition
given by Eqg. (12) in Section IV-A is:



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, MAY 2006

n+l _ o
Ui gk = Jik.j

n n+1
1 Yit14k ~ Yigk

T o
\/62 + (D+wuﬁj,k)2 + (DOy“?,j,kP + (DOZUZj,k)Q

i n+1 n
1 Uik — o1k

BY¥)
2 \/e2 + (D—uily 1)? + (Doyuiy ;1)* + (Dozuily 5 1)°

+ 1 Uijiik ufjilc
2 _\/62 + (DOquj,k)Q + (D-l-yu?,j,k)Q + (DOZUZJ-JC)Z
1 _ i U
2h2 _\/62 + (DOzqu_17k)2 + (D,yu;tj7k)2 + (DOZu;ij_Lk)Q
n LQ _ U1~ Uk
2 .\/62 + (Dozug; p)? + (Doyui; p)? + (Dyzufl; )?
1| ui e = Ul

T 912
202 ||\ Je+ (Doatiys P+ Dogui gy + (D2

15

(15)



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, MAY 2006 16

Upon decomposing each 3D image, we use thmages. Finally, in the third algorithm, we follow
iterated multi-node multiscale registration algorithnan iterated multiscale registration strategy. Using
(Algorithm III) to register each scale of the movingimages in which the precise deformation between
3D image with each scale of the fixed 3D imagehe fixed and moving images is known, we have
In Figure 18, we compare the voxel-wise intensitghown that the multiscale registration algorithms are
difference between the two sample slices shown indeed accurate for levels of noise much higher than
Figure 17 before and after iterated multiscale dehe noise levels at which ordinary deformable regis-
formable registration. In these images, black reprération techniques fail. Moreover, the iterated mul-
sents exact intensity agreement and brighter regiotiscale registration technique significantly reduces
indicate intensity disagreement. A comparison dhe computation time necessary to obtain accurate
the intensity differences before and after registratioregistration of noisy images. We have also demon-
demonstrates that the iterated multiscale registratistrated that the multiscale techniques improve the
method indeed recovers the difference between thecuracy of deformable registration even when the
two images. Similar results are obtained with allmages to be registered do not contain additional
other slices and phases. Working on a Dell Dinoise. Additionally, we have extended the hierar-
mension 8400 Intel Pentium 4 CPU (3.40 GHzchical multiscale decomposition of [18] to three-
2.00 GB of RAM), the total required computationdimensional images, and have demonstrated the ac-
time for both the 3D multiscale decomposition anduracy and efficiency of our multiscale registration
iterated multiscale multi-node registration algorithntechniques for the registration of three-dimensional
is on the order of approximately 15-30 minutesimages. Finally, we would like to emphasize that
depending on the data set. using the multiscale decomposition is independent

of the registration method and of the noise model.
VI. CONCLUSIONS

While there are many existing deformable regis-
tration techniques, common approaches are shown
to fail when one or more of the images to be
registered contains even moderate levels of noise.
Further, for high levels of noise, image registration
fails even when classical denoising algorithms are
applied to the images before registration. We have
presented deformable image registration techniques
based on the hierarchical multiscale image decom-
position of [18]. The multiscale decomposition of
an image results in a hierarchical representation that
separates the coarse and fine scales of the image.
We presented three separate multiscale registration
algorithms based on this decomposition. In the
first, we follow a single-node multiscale registration
strategy in which we register the scales of the
moving image with the fixed image, and use a
weighted average to estimate the actual deformation
between the images. In the second, we use a multi-
node multiscale registration method in which we
register the scales of the moving image with the
scales of the fixed image, and use a weighted aver-
age to estimate the actual deformation between the
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Original Image

Deformed Image

Fig. 1. The mid-sagittal brain slicé (shown on the left) and the deformed imagegshown on the right).

Original Image Registration Result

T —

Fig. 2. The result (shown on the right) upon registering teéodned imageS with the original imagel (shown on the left).

Exact Deformation Field Computed Deformation Field

Fig. 3. The exact deformation field corresponding the therdedition transformation betweehand.S (shown on the left) and the
deformation field produced by the registration algorithmmpegistering the deformed image with the original imagel (shown
on the right).
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Fig. 4. The noisy images$s, for increasing values of.

°
N
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Fig. 5. The deformation fields produced by the registratiggodthm upon registering the noisy deformed imaggswith the
original image!, for increasing values of.
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Mean Filter Median Filter Gaussian Filter

Fig. 6. The denoised images and registration results oletaipen applying mean, median, and Gaussian filters prior tetagig
the noisy deformed imag8y.¢ with the original imagel.

Scale 1 Scale 2 Scale 3 Scale 4

Fig. 7. The multiscale decomposition of the noisy deformed imgge.
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Scale 1 Scale 2 Scale 3 Scale 4
Scale 5 Scale 6 Scale 7 Scale 8

Fig. 8. The deformation fields obtained upon registering tieeanchical scales of the noisy imag® ¢ with the original image
using Algorithm |.

Fig. 9. The deformation field obtained upon registering theyndeformed imagé& ¢ with the original image using the single-node
iterated multiscale registration method (Algorithm IIl).
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Fig. 10. The noisy deformed imagés for increasing noise varianceés
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Fig. 11. The deformation fields obtained upon registeringniisy deformed imagés with the original imagel using Algorithm
1l for increasing noise variances
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Noisy Original Image Noisy Deformed Image Deformation Field

-

Fig. 12. The noisy mid-sagittal brain slidg.¢ (shown on the left), the noisy deformed imagig s (shown in the center), and the
deformation field (shown on the right) produced upon registefy ¢ with Iy ¢ using ordinary deformable registration techniques.

Scale 1 Scale 2 Scale 3 Scale 4
Scale 5 Scale 6 Scale 7 Scale 8

Fig. 13. The deformation fields obtained upon registeringntisy deformed image with the noisy fixed image using the muldeno
registration algorithm (Algorithm II).

Fig. 14. The deformation field obtained upon registering thisyndeformed image&,.¢ with the noisy original imagdy.¢ using
the multi-node iterated multiscale registration method (Aithon 111).
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Fig. 15. The deformation fields obtained upon registeringrtbisy deformed image&s with the noisy original imagds using
the multi-node iterated multiscale algorithm (Algorithm)Ifbr increasing noise varianceés

Noisy Original Image (6=2) Noisy Deformed Image (8=2)

Fig. 16. The noisy original and deformed imagesand S2.

Fig. 17. Two corresponding sample slices from two breathingsps of the same patient.
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Difference Before Registration Difference After Registration

Fig. 18. The voxel-wise intensity difference between tweresponding slices before and after iterated multiscalerdeible
registration.
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Chapter 2

PHYSICS OF IMRT

LE1 XING, PHD, QIuweN Wu, PHD, YONG YANG, PHD, ARTHUR BOYER, PHD

Radiation therapy (RT) as a means of managing cancer has
its roots in the discipline of radiology. From the time
Roentgen first discovered x-rays, two-dimensional trans-
mission images of the human body provided unprecedented
imagery of bony landmarks, allowing radiologists to deduce
the location of internal organs. Using planar radiographs,
radiologists planned cancer treatments by collimating rec-
tangular fields encompassing the presumed tumor loca-
tion. Additional blocks placed daily to match marks on the
patient’s skin and later the use of low-temperature melt-
ing dense alloys provided a cookie-cutter approach to treat-
ing the two-dimensional projections of the tumor volumes.

Human anatomy and tumor shapes, however, are inher-
ently three-dimensional. By treating a large amount of near-
by normal tissue, physicians were limited by the tolerance
of the normal tissue they were treating. Additionally, it was
not possible to take the three-dimensional structures into
consideration because of the limitations of early dose cal-
culations. The advantage of being able to treat a tumor tar-
get conformally can be appreciated by a simple example.
Assume that the tumor is a sphere of 5 cm in diameter; it
would have a volume of 65.4 cc. If one irradiates it with
square fields, directed at the six faces of the cube contain-
ing the sphere (an anatomic impossibility that we will allow
for the sake of making a theoretical point), a high-dose vol-
ume would be created within the sphere containing 125 cc.
This represents the three-dimensional nonconformal sit-
uation. If one were to treat the volume with circular fields,
directed toward the sphere from all directions (which, again,
is anatomically impossible), the high dose would be lim-
ited to the sphere itself. Approximately 60 cc of normal tis-
sue would be spared. The reduction of tissue irradiated is
a factor of 6/Ttor about half. This reduction in normal
tissue irradiation should theoretically improve the thera-
peutic ratio and allow the tumor target volume to be treat-
ed to a higher dose, thereby improving the probability of
tumor control. Other factors play critical roles as well.
Tumor biology has a great deal to do with the actual tumor
control achieved, but the basic idea of reducing normal tis-
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sue irradiation is a valid strategy and the goal for manag-
ing local tumor control with a minimum of normal tissue
complications. The details on radiobiology are discussed
in Chapter 3 “Radiobiology of IMRT.

Three-dimensional conformal radiation therapy
(3DCRT) is a method of irradiating target volume defined
in a three-dimensional anatomic image of the patient with
a set of x-ray beams individually shaped to conform the
two-dimensional beam’s eye view projection of the target.
3DCRT became feasible with the development of com-
puted tomography (CT). The development of spiral and
multislice CT scanners has made the acquisition of large
data sets practical. The reconstructed images, acquired with
patients in the treatment position, provide a model on
which geometric and dosimetric computations can be
applied. These data sets can be acquired with spiral scan-
ners capable of recording the transmission data needed to
reconstruct 50 to 100 transverse image planes spaced 2 to
5 mm apart. Given adequate immobilization devices to
help patients achieve and hold their treatment position for
the duration of the image acquisition, these fast scanners
provide excellent data sets that can be used for treatment
planning. The transmission data are used to reconstruct
a three-dimensional data set consisting of Hounsfield num-
bers associated with voxels. The development of the Digital
Imaging and Communication in Medicine (DICOM) stan-
dard and its various extensions for data exchange has made
possible the use of CT data sets acquired with the equip-
ment from one vendor with treatment planning systems
from another vendor and the ability to treat patients with
equipment from yet another vendor. The transfer of these
data over computer networks has improved the efficien-
cy and accuracy of the entire treatment planning and deliv-
ery process.

Evolution from 3DCRT to IMRT

Intensity-modulated radiation therapy (IMRT) emerged
in clinical practice as a result of the development of 3DCRT
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in the 1980s. Although the exact beginning of the modal-
ity depends on one’s definition of IMRT, it is generally
agreed on that the widespread implementation and real-
ization of the technique occurred in the United States in
the early 1990s with the commercially available Peacock
IMRT planning system and MIMiC fan beam delivery device
(North American Scientific, NOMOS Radiation Oncology
Division, Cranberry Township, PA)."? This was then fol-
lowed by the cone beam multileaf collimator (MLC)-based
IMRT in the mid-1990s. MLC allows the rapid and con-
trollable adjustment of field aperture and is thus ideally
suited for dynamic radiation beam modulation. In Figure
2-1, different IMRT modalities currently available or under
intense investigation are summarized. Physically, a com-
mon feature of these IMRT techniques is that they all
attempt to enhance control over the three-dimensional
dose distribution through the superposition of a large num-
ber of independent segmented fields from either a num-
ber of fixed directions or from directions distributed on
one or multiple arcs.

Step-and-shoot delivery

MLC-based
delivery
Dynamic delivery
Fixed-gantry
(| IMRT
Compensator-
based delivery
IMRT
< MIMIC slice-by-
slice delivery
Fan beam
IMRT Helical
tomotherapy
\_ | Arc-based
IMRT Aperture-modulated
arc therapy (single arc)
Cone beam
IMRT Intensity-modulated arc
therapy (multiple arcs)

FIGURE 2-1. Currently available intensity-modulated radiation thera-
py (IMRT) techniques. MLC = multileaf collimator.

Planning

Immobilization CT/MRI image Tumor/structure IMRT treatment
device acquisition delineation planning

Delivery and verification

Network file Treatment plan
management validation

FIGURE 2-2. The intensity-modulated radiation therapy (IMRT) treat-
ment process. CT = computed tomography; MRI = magnetic resonance
imaging.

verification delivery

Geometric b IMRT treatment
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Intensity modulation adds a new degree of freedom to
RT planning and provides a more effective means to pro-
duce tightly conformal dose distributions in complex treat-
ment situations. The objective of this chapter is to provide
an overall comprehension of IMRT and to review the physics
aspect of this technology. In Figure 2-2, the overall treat-
ment process of IMRT is illustrated. The key steps involved
in the process are discussed in separate sections. In the
remainder of this introductory section, we briefly describe
the IMRT delivery modes listed in Figure 2-1. Given that
fixed-gantry IMRT is by far the most popularly imple-
mented technique, emphasis is given to this mode first.

Fixed-Gantry IMRT

Fixed-gantry IMRT is similar to 3DCRT in that a number
of fixed beam directions are used (Figure 2-3A). In this
mode, treatment planning is generally done in two steps.
First, the dose optimization engine generates a set of inten-
sity profiles, one for each incident beam. Depending on the
treatment planning system, the optimized beam profile can
be continuous or in a form that is discretized in space and
intensity. Without loss of generality, an incident beam is
assumed to be already divided into a grid of beamlets, and
each beamlet can take a fixed number of intensity levels.
The beamlet width (dimension perpendicular to the leaf
travel direction) is limited to the MLC leaf width. The beam-
let length, or the step size of MLC leaf movement defined
as the smallest step in the leaf travel direction, is a para-
meter specified by the user. A smaller beamlet size or a larg-
er number of intensity levels offers better spatial or intensity
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FIGURE 2-3. A schematic drawing of (4) fixed-gantry intensity-modulated
radiation therapy (IMRT); (B) slice-by-slice fan beam delivery; (C) tomother-
apy delivery; and (D) cone beam—based IMRT.
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resolution but requires more MLC segments for delivery.
Typically, the size of the beamlet and the number of intensi-
ty levels in current IMRT treatment are set to 1 X 1 cm and
10, respectively. Figure 2-4 shows an example of an intensi-
ty map for a head and neck IMRT treatment, obtained using
the CORVUS (North American Scientific) ) inverse planning
system. Occasionally, the beamlet size or the number of inten-
sity levels is varied to meet a specific clinical requirement.

There are many ways to produce a desired fluence map.
Conceptually, physical compensators are the most straight-
forward. The most popular delivery technique is, however,
based on computer-controlled MLC. In this approach, an
intensity map is decomposed into a set of MLC-formed aper-
tures by using a leaf sequencing algorithm. The MLC sequences
are recorded in a computer file, which is then used to control
the MLC movement for plan delivery. It is important to note
that an intensity map, regardless of its shape, can always be
expressed as a superposition of a number of segmented fields
(for a given intensity map, generally, a number of ways exist
for this decomposition, leading to numerous leaf sequenc-
ing algorithms). Depending on the relationship between MLC
leaf movements and radiation dose delivery, the delivery can
generally be divided into step-and-shoot delivery and dynam-
ic modes. The former is the simplest computer-controlled
delivery scheme of the fixed-gantry IMRT, in which MLC leaf
movements and dose deliveries are done at different instances.
A leaf sequence file consists of alternatives of dose-only and
motion-only instances. Dynamic delivery differs from a step-
and-shoot mode in that leaf movement and dose delivery are
realized simultaneously.

Arc-Based IMRT

Arc-based treatment delivery has a long history in RT. An
early implementation of this method was the so-called
Takahashi arc, in which the beam aperture dynamically fol-
lows the beam’s eye view projection of the target. Stereotactic
radiosurgery based on cylindric cones or micro-MLC often
uses the arc delivery technique to “spread” the radiation dose
to different regions of the brain to avoid overdosing the nor-
mal brain tissue. Conformal arc therapy can produce excel-
lent dose conformation to a simple target. However, the target
volumes often exhibit significant deviation from the ideal
spherical or ellipsoidal shape. In this case, arc-based IMRT
treatment, which was first proposed by =}, provides a
viable option to improve the dose distr gions through
intensity modulation. The three different forms of arc-based
IMRT deliveries are schematically shown in Figure 2-3, B to
D, and their features are summarized below.

Fan Beam IMRT

A schematic drawing of the fan beam IMRT is shown in
Figure 2-3B. The delivery is realized on a slice-by-slice man-
ner, in which each slice covers 2 to 4 cm in the longitudinal
direction and 20 cm in diameter. North American Scientific’s
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FIGURE 2-4. Intensity patterns of a seven-field intensity-modulated
radiation therapy (IMRT) head and neck treatment obtained using the
CORVUS IMRT planning system.

Peacock system, which includes the PEACOCK inverse treat-
ment planning system and the MIMiC collimator, is used
for this type of treatment. The planning system uses 54 equal-
ly spaced beams and optimizes the beamlet maps of each
beam. The nominal beamlet sizes on the isocenter plane are
1x0.4cm, 1 x1cm,and 1 X2 cm. An advantage of this
modality is that the MIMIC collimator can be retrofitted to
an existing linear accelerator without an MLC, allowing IMRT
treatment without a substantial hardware upgrade. Use of
the arc delivery mode often results in a superior dose dis-
tribution in comparison with fixed-gantry IMRT with five
to nine beams for deep-seated tumors because of the involve-
ment of a large number of beams in an arc-based treatment.’

Tomotherapy

The tomotherapy machine has recently become commer-
cially available (TomoTherapy Inc., Madison, WI). The
delivery is also achieved slice by slice but in a helical (or
spiral) fashion in which the couch moves at a constant speed
during the gantry rotation (see Figure 2-3C). Radiation
from the linear accelerator first passes through a single
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set of primary collimator jaws, which shape the beam into
arectangular slit that is 40 cm long and up to 5 cm wide at
the isocenter. The MLC that is used to modulate the beam
intensity consists of 64 tungsten leaves that move across a
narrow opening to control the radiation passing through
to the target. The computer-controlled MLC has two sets
of interlaced leaves that move in and out very rapidly to
constantly modulate the beam.

Cone Beam-Based IMRT

To date, the majority of work on arc-based IMRT has been
focused on modulated fan beams, and little development has
been done using cone beams. The concept of intensity-
modulated arc therapy (IMAT) was first proposed in 1995
(see Figure 2-3D), and manufacturers have provided the
technical capability for dynamic arc delivery.* However, IMAT
has not been widely implemented. The lack of enthusiasm
for IMAT stems in part from the shortage of effective plan-
ning tools and reliable quality assurance (QA) procedures.
Reports from several institutions, however, support the notion
that a cone beam—based arc technique can generate superi-
or dose distributions, at least for some deep-seated tumors.>®

Cone beam arcs use the arc feature of fan beam IMRT yet
take advantage of the cone beam modulation of the fixed-
gantry IMRT. To compute dose distributions, an arc is approx-
imated by many fixed fields at small intervals of gantry
rotation. Physically, however, the achievement of intensity
modulation for cone beam delivery is less straightforward
in comparison with its fan beam counterpart. Unlike a slice-
by-slice delivery, in which the radiation across the slice can
be segmentally blocked from the side by multiple indepen-
dent vanes, the MLC-shaped aperture cannot change from
one shape to another fast enough as the gantry rotates. This
problem can be solved, at least in principle, by lowering the
gantry rotation speed because, in reality, it is the relative
speed between the gantry rotation and MLC leaf movement
that determines the level of achievable intensity modulation.

An alternative approach is to use multiple cone beam arcs,
as proposed by Yu.* At each gantry angle, the beam is con-
sidered to be a superposition of a series of subfields, each with
uniform intensity from these arcs. When a single arc is used
for treatment, the technique is sometimes called aperture-
modulated arc therapy. At this time, there are no studies defin-
ing how many arcs are sufficient for any disease sites. In Figure
2-5,a comparison of average dose-volume histograms (DVHs)
of 3DCRT, IMRT, and IMAT prostate plans for ten patients
with prostate cancer is shown.” The solid line is IMAT, the
dotted line is IMRT, and the dot-dash line is 3DCRT. It is evi-
dent that IMAT vyields better target coverage and improved
bladder and rectum sparing in comparison with fixed-gantry
IMRT. Finally, being able to modulate the dose rate while the
gantry rotates is a desirable feature, further enhancing the
performance of the cone beam arc—based IMRT. To date,
however, no linear accelerator manufacturers have provid-
ed such technical capability in the clinical mode.
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FIGURE 2-5. Average dose-volume histograms for 10 patients with
prostate cancer planned using three-dimensional conformal radiation
therapy (dot-dash line), intensity-modulated radiation therapy (dotted
line), and intensity-modulated arc therapy (solid line). GTV = gross tumor
volume. (To view a color version of this image, please refer to the CD-
ROM.)

Treatment Planning

RT planning requires the calculation of a set of parameters
for the delivery of a radiation dose to the patient. Although
manual forward planning may be possible in some sim-
ple cases (see the examples below), computer optimization
of the beam parameters is almost always used for IMRT
treatment planning because of the vast size of search space
involved in the problem. In general, this is realized using
an inverse treatment planning technique, which derives the
optimal beam parameters by starting from a prescribed or
desired dose distribution. Although the details of the inverse
planning calculation depend on the delivery method, the
principle behind the algorithms is essentially the same.
Inverse treatment planning is, in fact, a special case of gen-
eral inverse problem encountered in the sciences and engi-
neering, which attempt to derive the optimal input
parameters that will produce the desired output. Before
discussing the inverse planning algorithms in detail, it is
illustrative to briefly summarize the features of the forward
planning approach.

Forward Planning for Segment-Based Treatment

There are two aspects in RT planning: dose conformity and
dose uniformity inside the target. What it takes to accomplish
the two goals may be different. When the shape of the target
is regular and/or when only two or three incident beams are
employed, the isodose shaping can often be achieved by beam
shaping with an MLC. To achieve a uniform dose distribu-
tion within the target volume, one only needs to accommo-
date the geometric variation of the external contour. Physical
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or dynamic wedges are usually used if the patient contour
changes monotonically or in some simple hinge field arrange-
ments. In a more general situation, additional MLC-shaped
field segments can be introduced to boost a “cold” region or
reduce a “hot” region. Examples of this type of case include
but are not limited to opposed tangent field breast treatment
and anterior-posterior treatment of Hodgkin’s disease. For
illustration purpose, a forward multisegment breast treat-
ment plan is considered.

g

- il i

The multisegment breast plan starts with the standard
opposed tangent fields. In many cases of breast cancer,
obtaining a uniform dose within the target volume could
be problematic when this approach used. To improve on
this, one may proceed to sequentially introduce additional
MLC field segments to one or both beam directions to boost
the cold region(s) under the guidance of dose distribution
in the plane perpendicular to the incident beam direction.
Figure 2-6 illustrates the three segments of the lateral and
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FIGURE 2-6. Opposed tangential fields for the treatment of a patient with left-sided breast cancer (top row). The middle and bottom rows are the

multileaf collimator shapes of the three segments of the medial and lateral fields chosen to improve dose uniformity within the treatment volume.

(To view a color version of this image, please refer to the CD-ROM.)



medial fields. In this plan, the first segments in the lateral
and medial fields and their relative weights are determined
using conventional techniques. A physical wedge of 30° is
placed on the lateral beam. The two additional segments in
each beam direction are then introduced sequentially, and
their weights and apertures are adjusted using trial and error
to achieve a more uniform dose distribution. The isodose
distributions for both plans are shown in Figure 2-7. The
maximum dose and the volume receiving a high dose in a
multisegment plan are significantly reduced.

Multisegment-based forward planning techniques can
be applied only to some relatively simple cases in which the
high-dose region is primarily defined by the conventional
treatment fields. When isodose conformity to an irregu-
larly shaped target is needed, multiple beams (typically
more than five) with a higher level of intensity modulation
are needed. In this situation, it becomes tedious to use for-
ward planning—based approaches, and more sophisticated
inverse planning techniques become necessary.

Inverse Planning

Inverse planning uses a computer optimization algorithm
to determine the optimal beam parameters that lead to a
solution as close as possible to the desired output.
Mathematically, the problems of image reconstruction,
image restoration, signal process, and investment portfo-

FIGURE 2-7. Conventional opposed tangential breast (/eft) and multi-
segment (right) plans. The isodose lines are (from inside to outside) 105,
100, 95, 90, 80, 50, 20, and 10%. A dose of 50.4 Gy was prescribed to
the 90% line. Note that the use of multiple segments improves the dose
uniformity to the breast. (To view a color version of this image, please
refer to the CD-ROM.)
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lio management can all be formulated as an inverse prob-
lem. Roughly speaking, inverse problems can be described
as problems in which the output or consequences are known
but not the cause. The difference between various treat-
ment planning systems lies in the specifications of the input
and output parameters and the criteria used to select the
final solution. Specific to RT, the output is generally spec-
ified by a desired dose distribution, a set of desired DVHs,
or even the tumor control probability (TCP) and normal
tissue complication probability (NTCP) for the involved
structures. The input parameters to be optimized depend
on the delivery scheme. Typically, the number of beams
and their incident directions are determined empirically
before dose optimization. Each incident beam is discretized
into a bixel map (the bixel or beamlet size is typically 1 x
1 cm?). The task of inverse planning is then to determine
the optimal bixel map or the relative weights of all of the
beamlets.

To better appreciate the problem, assume that six inci-
dent beams are used for an IMRT treatment. If each beam
is divided into 100 beamlets and each beamlet has 10 per-
missible intensity levels, there would be 10 x 100 physi-
cally realizable plans. It can be shown that the number of
physically realizable solutions for a six-field 3DCRT plan
is much less than this number. When wedges are not used,
there are 10° physically feasible solutions (many of these
can be immediately eliminated from being a candidate treat-
ment plan because they do not produce clinically accept-
able dose distributions). For a given desired dose distribution
Dy, the task is to find a solution D in the physically feasi-
ble solution pool {D} that is the same as Dg or, more appro-
priately, differs the least from Do. There are many ways to
pick a D that is a “good” representation of the prescribed
dose Do. A commonly used approach for plan optimiza-
tion is to minimize the distance between D and Dy in the
L2 norm. For therapeutic applications, it is common to
introduce an importance factor r 0 to control the relative
importance of the structure 0. This leads to the following
quadratic objective function:

F= l YD (n) - D),
L

(1)
where r0 is the importance factor that weights the impor-
tance of the structure ¢ and parameterizes our clinical
trade-off strategy and Do and Dy, are prescribed and cal-
culated doses, respectively. Optimization of this function
is essentially a least squares type of estimation in statisti-
cal analysis. In addition to equation 1, many other types of
objective functions have been proposed for plan opti-
mization. The construct of the objective function plays a
crucial role for the success of IMRT treatment and is wor-
thy of detailed discussion.
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Models and Model Parameters of Inverse Planning

A common feature of all inverse problems is that they are
generally underdetermined and ill-posed. The selection of
the final solution depends on the underlying assumption
of the model. The objective function quantitatively ranks
a candidate treatment plan, and the optimization of the
function yields the optimal parameters. In conventional
treatment planning, the objective function depends on
beam weights, wedge angles, and orientations, whereas in
IMRT, it is a function of the beamlet weights. Ideally, an
objective function would mimic the decision-making of
experienced oncologists and planners. It would rank a given
solution (corresponding to a set of parameters) in a way
consistent with clinical judgment. In practice, however, a
gap exists between mathematical modeling and clinical
decision-making, and much effort is being devoted to derive
clinically meaningful objective functions for inverse plan-
ning. Because the optimization results depend strongly on
the objective function, there is inevitably subjectivity asso-
ciated with the various dose optimization schemes.
Therefore, it is essential for physicians to carefully evalu-
ate a treatment plan after optimization to ensure that the
“optimal” solution makes clinical sense. Otherwise, the suc-
cess of an optimization is, at best, mathematical.

If an optimization algorithm is to have a genuine impact
on clinical practice, it should incorporate all of the dosi-
metric and radiobiologic knowledge plus an algorithm for
modeling the way in which radiation oncologists and patients
balance the risks and benefits. Despite the availability of high-
speed computers, state-of-the-art inverse planning algo-
rithms, and improved imaging modalities, we are still along
way from generating truly optimized IMRT treatment plans.
For convenience, it is appropriate to classify the currently
available dose optimization methods into four categories:
(1) dose based, (2) clinical knowledge based, (3) equivalent
uniform dose (EUD) based, and (4) TCP or NTCP based.
The underlying difference between these models lies in which
end points are used to evaluate the treatment plan or which
fundamental quantities are used to define the optimal plan.
In reality, each type of inverse planning formalism has its
own pros and cons in coping with the clinical decision-
making process and in practical implementation. These
are briefly summarized below.

Dose-Based Formalism

The dose and/or dose volume—based optimization is con-
cerned with accurate dose distributions or DVHs of the
involved structures. The quadratic objective function given
in equation 1 represents an example of this type. Frequently,
DVHs and other physical constraints are imposed to describe
certain clinical requirements. The dose or dose volume pre-
scriptions are used implicitly as surrogates of the desired
clinical outcome. At this point, the dose-based approach is
the most widely employed method, as is evidenced by the

fact that all commercial IMRT planning systems have cho-
sen dose-based ranking as the starting point. There are sev-
eral reasons for this. First, the physical dose objectives reflect
the majority of the clinical practice. Although biologic mod-
els are available in both research and clinical systems, the
uncertainty associated with the predictions often outweighs
their guidance. Dose-based objectives will remain the dom-
inant modality of optimization and evaluation for some
time. Second, the physical dose is closely related to the opti-
mization parameters, and simple mathematical models,
such as the quadratic dose difference expressed in equation
1, can be effectively used.

Clinical Knowledge—-Based Formalism

It is highly desirable to incorporate clinical end points in
guiding the treatment plan optimization process. The cur-
rently available dose-based objective functions do not truly
reflect the nonlinear relationship between dose and the
response of tumors and normal tissues. In reality, the dose
dependence of the clinical end point of a structure may be
degenerate in the sense that a given clinical end point may
be caused by a variety of dose distributions or DVHs. For
the parotid glands, for instance, it is known that the clinical
end point is the same if 15 Gy is delivered to 67% of the vol-
ume, if 30 Gy is delivered to 45% of the volume, or if 45 Gy
is delivered to 24% of the volume. If the dose-based objec-
tive function, equation 1, is used, the rankings for the three
different scenarios would be different. Even with the use of
dose-volume constraints, it is difficult, if not impossible, to
incorporate this type of knowledge to correctly model the
behavior of the organ in response to radiation. Indeed, a con-
straint in optimization acts as a “boundary condition” dur-
ing the optimization (there are methods of treating
constrained optimization problem into an equivalent uncon-
strained one, with a different objective function) and does
not change the rankings of dosimetrically different plans.
To overcome these dilemmas, a clinical knowledge—based
optimization scheme has recently been developed by Yang
and Xing.!? The central theme of the approach is that clin-
ical outcome data should be used to direct the plan opti-
mization process. In this approach, the quality of a treatment
plan is measured by a heuristically constructed objective
function which depends not only on the dosimetric prop-
erties but also the dose-volume status, which makes it pos-
sible to take advantage of the existing outcome data of the
involved organs. For the parotid glands, for instance, the
three different DVHs mentioned above will be scored equal-
ly by the objective function. The final dose distribution or
DVHs of the glands will be determined by the optimization
algorithm with the consideration of the requirements of
other structures. If one of the three possibilities needs to be
selected, the one that yields better scores in other involved
structures will be favored by the algorithm. The specifics of
the plan selection process will, of course, depend on the geo-
metric and dosimetric details of the particular patient.



It is important to emphasize that, at this point, clinical
outcome data are sparse and underdetermined and may
have large uncertainties. By “underdetermined,” we mean
that there are not enough clinical data points available to
objectively rank all realizable plans. Thus, it is necessary to
produce an interpolation/extrapolation scheme for plan
ranking. A sensible approach has also been provided in
Yang and Xing’s work based on the well-known dose
response model.'? The clinical knowledge-based model
allows one to more objectively rank treatment plans accord-
ing to their clinical merits without relying on biological
index-based or EUD-based prescriptions.

EUD-Based Formalism
Optimization of the dose distributions can also be cast into
the realm of EUD, which is one level higher in terms of the
use of biologic information.!"!> The EUD is defined as the
biologically equivalent dose, which, if given uniformly, leads
to the same cell kill as the actual nonuniform dose distri-
bution. It can be expressed as follows:

eup=(L3pr |
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In this expression, Nis the number of voxels in the anatom-
ic structure of interest, D;is the dose in the 7'th voxel, and
a is the tumor- or normal tissue—specific parameter that
describes the dose-volume effect. This formulation of EUD
is based on the power law dependence of the response of a
complex biologic system to a stimulus.

EUD exhibits a dose-response relationship similar to
that of the traditional biologic indices. Therefore, it can be
a surrogate for them and, in the meantime, is closely relat-
ed to the physical dose. The objective function based on
EUD can be expressed in the following:

F=T1+,

(3)
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FIGURE 2-8. Sagittal isodose distributions for prostate intensity-modulated radiation therapy plans designed using (A4) dose volume—based crite-
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for normal tissues. There are several advantages of EUD-
based optimization approaches: (1) the formulae are sim-
ple, (2) the formulae can be applied to both tumors and
organs at risk (OAR) using different parameters, and (3)
there are fewer planning parameters than dose
volume-based or other biologic indices—based optimiza-
tion. It has been shown that EUD-based optimization can
provide the same or better coverage of targets as dose vol-
ume-based optimization and that it offers significantly bet-
ter protection of OAR. These improvements in the dose
distributions to OAR may be due to the fact that there is a
larger search space available in EUD optimization because
the constraint, or the objective, is determined on the basis
of the whole organ rather than the partial volume of the
structure. Thus, EUD optimization can be used to search
for and evaluate multiple plans that may have different
DVHs but the same EUDs. Figure 2-8 shows the dose dis-
tributions for IMRT plans optimized using dose vol-
ume-based and EUD-based objective functions for a patient
with prostate cancer. The OAR are the rectum and blad-
der. All plans used identical configurations of five copla-
nar 18 MV photon beams placed at equally spaced gantry
angles. The plans were normalized to deliver the prescrip-
tion dose of 70 Gy to 99% of the target volume. It is clear
that, for the same minimal target dose, sparing of the OAR
is greatly improved in the EUD-based plan. Furthermore,
a sharp dose gradient at the interface between the target
and OAR is realized.
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ria; (B) equivalent uniform dose (EUD)-based criteria; and (C) EUD-based criteria with target inhomogeneity constraints. Reproduced with permission.
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The EUD concept can also be incorporated into the
framework of physical dose optimization, such as the
method of projection over the convex set.13 In this method,
EUD is implemented as an optimization constraint. At each
iteration of the optimization, if an organ violates an EUD
constraint, a new dose distribution is calculated by pro-
jecting the current one onto the convex set of all dose dis-
tributions fulfilling the EUD constraint. The cost is slightly
more iterations than pure physically constrained opti-
mization. This algorithm is easy to implement and pro-
vides better dose sparing of parallel structure organs for
which physical constraints may be difficult to define.

Biologic Model-Based Formalism

Biologic model-based optimization proponents argue that
plan optimization should be guided by estimates of bio-
logic effects. The biologic effect and the radiation para-
meters are linked by the radiation dose through the use of
a dose-response function. The relationship between the
two is not, however, a one-to-one correspondence. A given
biologic end point may be produced by many possible dose
distributions, which would generally not be equally scored
if a dose-based model was used. In principle, biologically
based models are most relevant for RT plan ranking.!1>14-21
However, the dose-response function of various structures
is not sufficiently understood, and at this point, there is
considerable controversy about the models for computing
dose-response indices and their use in optimization.

The treatment objective in biologic model-based inverse
planning is usually stated as the maximization of the TCP
while maintaining the NTCP to within acceptable levels.?>??
Physical constraints on dose and dose volume are often
introduced to ensure that the results are consistent with
the clinical judgment of the physicians. Brahme and Kallman
and colleagues used the probability of uncomplicated con-
trol, P+, in their formalism.'?* Practically, the use of dose-
response indices for optimization might also pose some
problems. For instance, dose response—based optimization
may lead to very inhomogeneous target dose distributions.
Furthermore, it is difficult for clinicians to specify the opti-
mization criteria in terms of certain dose-response indices
(eg, TCP, NTCP, and P-). This difficulty becomes even more
significant when two or more independently optimized
plans are to be combined because it is impractical to spec-
ify the desired TCP and NTCP of the component plans.
Because of these problems, the use of biologic model-based
dose optimization has mainly been limited to the research
setting and little effort has been made to implement these
into commercial IMRT planning systems.

Model Parameters
Any dose optimization framework must deal with trade-
offs between the target and OAR.?> Generally, the objec-
tives of different structures are multifaceted and
incommensurable. A combination of the objectives is usu-

ally done to form a single objective function. In this process,
a set of importance factors is often incorporated into the
objective function to parameterize trade-off strategies and
prioritize the dose conformity in different anatomic struc-
tures. Whereas the general formalism remains the same,
different sets of importance factors characterize plans of
obviously different flavor and thus determine the final plan.
One of the major difficulties is that the influence of these
weighting factors on the final solutions is not known until
the dose optimization is done, necessitating a trial-and-
error determination of the parameters. In most (if not all)
of the currently available planning systems, the values of
the weighting factors are presented to the user as opti-
mization parameters. A good understanding of the role
of these parameters and suitable training on how to empir-
ically determine the parameters are required.

It is possible to use an iterative algorithm to estimate
the weighting factors numerically.>> Plan selection is done
in two steps. First, a set of importance factors is chosen,
and the beam profiles are optimized under the guidance of
a quadratic objective function using an iterative algorithm.
The “optimal” plan is then evaluated by a decision func-
tion, in which the corresponding trade-off parameters
are more easily determinable based on some simple con-
siderations.?® The importance factors in the objective func-
tion are adjusted iteratively toward the direction of
improving the ranking of the plan. For every change in the
importance factors, the beam parameters are reoptimized.
Even though further refinement of the plan may still be
needed in selected cases, the technique provides a good
starting point for planning.

Dose Optimization Algorithms

Although the modeling of RT treatment is of paramount
importance, the optimization of the selected multidi-
mensional objective function provides a vehicle to obtain
the optimal solutions. The task of an optimization algo-
rithm is to find the combination of beam parameters that
optimize the chosen objective function, possibly subject
to some constraints. Numerous algorithms have been devel-
oped for the optimization of a multidimensional function
in the sciences and engineering over the years, and there
is a vast literature on the subject. Generally speaking, the
selection of an optimization technique depends on the
specific form of the objective function and the imposed
constraints. In practice, even for the same class of prob-
lem, more than one algorithm may exist for achieving the
same goal, and the detailed implementation of different
algorithms can be quite different. Many optimization tech-
niques have been used for RT inverse planning. Here we
briefly describe a few approaches to illustrate how a mul-
tiobjective objective function is optimized and the pros
and cons of these common techniques (see Chapter 10
“Treatment Planning”).



Iterative Algorithms

The iterative method is perhaps the most widely imple-
mented technique in RT optimization. Starting with an ini-
tial approximate solution, it generates a sequence of solutions
that converge on the optimal one. For large systems, espe-
cially large linear systems, iterative methods prove to be effi-
cient in terms of computer storage and computational time.
The available iterative techniques can generally be grouped
as non—derivative-based and derivative-based methods. The
former incorporates only an objective function value cal-
culation with some systematic method to search the solu-
tion space. This technique is generally intuitive, easy to
implement, and particularly suitable for simple systems and
educational illustration. For a complex system, the con-
vergence behavior may not be as good as more sophisticat-
ed gradient-based search techniques. The computational
cost and poor convergence in this situation may outweigh
the benefit of avoiding derivative calculations.

As an example, Figure 2-9 illustrates the flowchart of an
algebraic iterative inverse planning technique (AIIPT)
described by Xing and colleagues.’®?” A schematic draw-
ing of calculation pixels and bins in the AIIPT calculation
is shown in Figure 2-10. The algorithm was generalized
from the algebraic reconstruction technique (ART) based
on the analogy between rotational RT optimization and
tomographic image reconstruction. In the AIIPT algorithm,
voxels are examined in sequence, and corrections are made
immediately after a pixel is addressed. The successive treat-
ment of the system eventually leads to an optimized solu-
tion. A geometric interpretation of ART has been
published.?

Algebraic iterative method:

Initial beam profiles
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> Calculate dose at a voxel n
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Compare D(n) with Dy(n)
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The iterative process is described by the following oper-
ations: (1) assume an initial set of beam profiles; (2) com-
pute the dose at a voxel; (3) compare the calculated and
prescribed doses; (4) obtain correction factors to the beam-
lets that irradiate the voxel; and (5) apply the corrections
to the contributing beamlets and then repeat from step 2
for the next voxel (go back to the first voxel and increase
the iteration index by one after all voxels are addressed).
This process is repeated until the desired accuracy is
achieved. The simultaneous iterative inverse planning and
least squares inverse treatment planning algorithms also
fall into the same category of the nonderivative method.?®2
A similar algorithm with a multiplicative beamlet updat-
ing scheme was described by Jones and Hoban.?’

Various gradient-based methods have been successful-
ly applied to RT plan optimization and implemented in
commercial IMRT planning systems. A general class of iter-
ative algorithms can be written as

A el nky gy pe il

I =1 AM™VF(I™) (4)
where I is the fluence vector, M4 is a matrix, and A is a
positive parameter. When M?4 is a unit matrix, equation
5 is the well-known steepest descent algorithm, whereas
when M = HO, it describes Newton’s method, in which
H% s the inverse of the Hessian matrix.’" In the steepest
descent algorithm, from a set of fluence functions, 1°4, we
search along the direction of the negative gradient, —[
F(1°), to a minimum on this line; this minimum is taken
to be I"¢".

It is fair to say that the choice of a specific algorithm
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FIGURE 2-9. Flowchart of the algebraic iterative inverse planning tech-
nique.
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FIGURE 2-10. Pixel and bin configurations used in the algebraic iter-
ative inverse planning technique. In this figure, wiis the beamlet weight
and D¢ and Do represent the calculated and prescribed doses, respec-
tively. Reproduced with permission.
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to solve the inverse planning problem is not unique and
is determined by the problem at hand and, to a certain
extent, by personal preference. Generally, the iterative
approach works well for a nonconvex objective function,
and the solution can be trapped in local minima for sys-
tems with a complicated form of the objective function.
Several commercial systems provide both iterative and
stochastic optimizers so that users have the tool to com-
pare the functionality of different approaches and, more
importantly, to independently check an optimization cal-
culation.

Computer-Simulated Annealing

The simulated annealing method?! is an extension of the
original Monte Carlo simulation algorithm introduced by
Metropolis and colleagues. It attempts to find the opti-
mal solution by mimicking the behavior of a system of
interacting particles that are progressively cooled and
allowed to maintain thermal equilibrium while reaching
the ground state. In physical annealing, the system is heat-
ed, thereby conferring randomness to each component. As
aresult, each variable can temporarily assume a value that
is energetically unfavorable, and the system explores con-
figurations that have a higher energy. The fundamental
principle here is that even at moderately high temperatures,
the system slightly favors regions in the configuration space
that are overall lower in energy and hence more likely to
contain the global minimum. The algorithm employs a ran-
dom search that not only accepts changes that decrease
objective function but also some changes that increase it.
The probability for accepting a trial configuration is con-
trolled by the temperature and is given by

IrAF =1
Chherwise (5)
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where AF is the increase of the objective function and T'is
the system temperature. The temperature is gradually low-
ered according to an empirically chosen cooling sched-
ule.?®3% As the temperature is slowly reduced, the
probability of accepting a trial configuration with a high-
er objective function value is reduced. The starting tem-
perature is chosen to be higher than the largest value of
objective function calculated for a random set of vari-
able configurations. In principle, this algorithm is capa-
ble of finding the global minimum of a multidimensional
objective function even when local minima exist. For more
details about the simulated annealing algorithm, readers
are referred elsewhere.?4-3¢

Other Optimization Algorithms
In addition to the iterative and simulated annealing algo-
rithms, many other types of optimization approaches have
been employed for therapeutic plan optimization. Linear

programming was applied to the dose optimization of
3DCRT plans and cyberknife plans. The utility of filtered
backprojection from CT image reconstruction has also been
explored by several researchers.?’—?

The constrained least square algorithm*’ was employed
to optimize 3DCRT plans*"*2 and IMRT plans. Constrained
optimization of a linear system can be viewed in two ways.
One involves transformation of the problem into a reduced
space. Another approach is to work with the lagrangian
function and to obtain the solution of the system by a direct
matrix manipulation. In this way, a priori knowledge of the
variance of the system variables can be included as a
lagrangian multiplier. Without repeatedly invoking the dose
calculation, this algorithm allows one to obtain the opti-
mal solution of the system with significantly increased com-
putational speed, providing a fast interactive planning
environment for IMRT planning.

Mixed integer programming technique was used to gen-
erate treatment plans for linear accelerator-based radio-
surgery,*> IMRT,** and 3DCRT.** Lee and Zaider also
applied integer programming for permanent prostate
implant planning.*® The mixed integer programming mod-
els incorporate strict dose restrictions on the tumor vol-
ume and constraints on the desired number of beams,
isocenters, couch angles, and gantry angles. The goal is to
deliver the full prescription dose uniformly to the tumor
volume while minimizing excess radiation to the sur-
rounding normal tissue. Hou and colleagues used simu-
lated dynamics in a classic system of interacting particles
for IMRT optimization.*” In this approach, an analogy is
established between intensity profile optimization in IMRT
and relaxation to the equilibrium configuration in a dynam-
ic system. Dose-volume constraints are handled by placing
hard constraints on partial volumes. The genetic algorithm
is another widely used approach in sciences and engineer-
ing and has found some preliminary application in RT dose
optimization.*8->1

For all of their complexity, the algorithms to optimize
a multidimensional function are routine mathematical pro-
cedures. In general, simulated annealing and genetic algo-
rithms are powerful approaches, but excessive computation
time is a drawback to their clinical application. Treatment
planning based on filtered backprojection and direct Fourier
transformation have difficulty handling the negative flu-
ence problem and are not generally applicable for an arbi-
trary dose prescription and kernel. Iterative methods are
widely used to optimize a multidimensional objective func-
tion by starting with an initial approximate solution and
generating a sequence of solutions that converge to the
optimal solution of the system.

It is useful to note that much effort has also been devot-
ed to formulate the problem into a more effective mathe-
matical framework. For example, Xing and Lian and their
colleagues introduced a new concept of a preference func-
tion and recast the problem into the framework of Bayesian



statistical analysis.>>>>=* In this approach, instead of a rigid
prescription dose, a range of prescription doses prioritized
by the preference function is allowed. The rationale here is
that since a rigid prescription is not achievable and the final
solution will deviate from it anyway, we would have much
better chance to obtain what we want if we could inform
the system with some a priori information about our pref-
erences on different possible scenarios (instead of leaving
the decision-making totally to the computer). The tech-
niques developed over the years in statistical decision-mak-
ing can be easily extended to RT plan optimization problem.
The primary advantage of the technique is that it enables
one to effectively incorporate the existing clinical knowl-
edge or other prior knowledge into inverse planning. When
the prescribed dose takes a single rigid value, the above for-
mula becomes identical to the conventional least squares
approach or alike. Maximum likelihood estimation>°° or
the maximum entropy approach®” also represents a special
case of the formalism. Finally, it is interesting to point out
that various techniques in related fields such as neural net-
works>® and fuzzy logic® are also being translated for RT
dose optimization.

Practical Aspects of IMRT Planning

Inverse planning is a computer-based decision-making
technique that derives the optimal treatment plan by start-
ing with a set of desired doses or DVHs prescribed to the
target and normal tissues. To use an inverse planning sys-
tem to generate a treatment plan, one must delineate the
tumor volume and sensitive structures, for which dose
avoidances are desired. This differs from conventional plan-
ning, in which the target volume is often defined directly
on the portal films (see Chapter 11 “Plan Evaluation”). If
target contours need to be altered after a conventional treat-
ment plan is obtained or during a course of treatment, it
is usually achieved by modifying the positions of the cor-
responding MLC (or by modifying a block). In inverse treat-
ment planning, however, the beam profiles and beam
apertures are derived by the system, and any change in
the target volume requires reoptimization of the plan.
Moreover, all of the tasks following IMRT planning, such
as patient-specific QA and data entry, need to be repeated.

IMRT planning is still inherently a trial-and-error process
owing to the large number of input parameters.®® The trial-
and-error process here is quite different from that in 3DCRT,
in which intuition and previous experience can be easily used
to guide the planning process. In an anterior-posterior treat-
ment, for example, if the dose in the anterior region is high-
er than that of the posterior region, one can simply increase
the weight of the posterior field. This type of guidance is lost
in inverse planning, and, frequently, the trial-and-error process
has to proceed in a “blind-guessing” fashion because the
influence of most of the system parameters is not known
until the dose optimization is complete. A good under-
standing of the effect of treatment planning parameters used
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in optimization on the resultant dose distribution is neces-
sary to carry out the planning and the plan “tweaking” process.
Recently, tools for assisting the interactive planning have
emerged. The dose shaping technique described below is one
example. Hopefully, this type of research will make clinical
inverse planning more straightforward in the future.

Plan review is an important aspect of IMRT. In inverse
planning, an objective function is constructed based on
general physical, dosimetric, and biologic considerations
and is defined as a global quantity.>? The translation of the
treatment objectives to a single objective function is at best
an approximation. Just like any data reduction or com-
pression scheme, there is a loss of information with regard
to the characteristic of the individual data point. Even with
the best possible objective function, the optimal solution
may still not represent the best clinical solution in every
aspect. It is important to review the plan to ensure that the
final solution is consistent with clinical judgment. IMRT
plan evaluation tools vary from one commerical plan-
ning system to another. Typically, they include isodose dis-
tributions in axial, coronal, and sagittal planes; DVHs; and
maximum, minimum, and average target and sensitive
structure doses. A description of plan evaluation methods
is presented in Chapter 12 “Delivery Systems.”

The dose inhomogeneity of an IMRT plan is usually
higher than that in 3DCRT as a consequence of increased
conformity. Any deviation from a conventional uniform
dose scheme should be carefully evaluated to ensure its clin-
ical acceptability. If hot or cold spots are unavoidable, efforts
should be made to ensure that they are not located in unde-
sirable locations. For example, a cold spot in the center of
the target or a hot spot outside the target should be avoid-
ed. Even a hot spot inside the target volume may not be
desirable. For example, for prostate cancer, a hot spot close
to the urethra is usually not acceptable, particularly if the
total dose is escalated. The dose gradient of an IMRT plan
near the boundary of the target or OAR can be very high.
If the structure(s) is susceptible to the setup uncertainty
and/or organ motion, the actual dose received by the tar-
get or OAR may be significantly lower or higher than that
shown in the plan.®"-%? In this case, an adequate margin for
the structure is important to ensure that the planned dose
distribution can be achieved in a clinical setting.%?

Beam placement in IMRT is worth discussing. Generally
speaking, the beam configuration may have significant influ-
ence on the quality of an IMRT plan even when a large num-
ber of incident beams (eg, nine beams) are used.®*°
Clinically, however, beam orientations are selected on a trial-
and-error basis. To obtain an optimal beam configuration,
in principle, one can simply add the degree of freedom of
beam angles into the objective function and optimize them
together with the beamlet weights.>7° Although this does
not pose any conceptual challenge, the computational time
becomes excessive because of the greatly enlarged search
space and the coupling between the beam profiles and the
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beam configurations. The beam intensity profiles have to
be optimized for every trial beam configuration because the
influence of a set of gantry angles on the dose distribution
is not known until beam intensity optimization is performed.
A computationally efficient optimization algorithm is nec-
essary to have a clinically practical beam orientation opti-
mization tool. Some progress has been made toward this
goal.”172 But before commercial companies implement clin-
ically practical tools for automated or semiautomated beam
placement, alternative techniques or even some general
guidelines would be useful to facilitate IMRT planning.
One of the appealing approaches is the class-solution
method.”® The basic idea is to construct a representative
beam configuration based on previous experience for a
given disease site and then use this “class-solution” for sub-
sequent treatment planning. Schreibmann and Xing sys-
tematically investigated the issue and proposed a set of
class-solutions for IMRT prostate treatment.”* To derive
a population-based beam orientation class-solution, a beam
orientation optimization algorithm was used to derive the
optimal solutions for each individual in a group of 15
patients with prostate cancer. Figure 2-11 shows the dis-
tributions of optimal beam angles for five, six, seven, and
eight beams for the 15 patients studied. The colored short
lines represent directions found in individual cases, and
the red bold long lines represent the directions identified
as the class-solutions. These results indicate that the beam
orientations for a certain incident direction are confined
in a certain range and that beam orientation class-solutions
may be a reasonable compromise between what is practi-
cal and what is optimal for prostate IMRT. For other dis-
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FIGURE 2-11. Distributions of beam angles for five, six, seven, and
eight beams, respectively. The short colored lines represent directions
found in individual cases, and the long red (bold) lines represent the
directions identified as class-solutions. Reproduced with permission.
(To view a color version of this image, please refer to the CD-ROM.)

ease sites, beam orientation class-solutions may not exist
because the geometric variations among the patient pop-
ulation are too large.

On approval of the plan by the physician, an RT plan file
or a DICOM-RT file is generated containing all of the rel-
evant machine parameters for IMRT treatment. The IMRT
plan file can be complex. For example, it may contain hun-
dreds of MLC segments. Consequently, manual delivery is
not an option. Instead, delivery is usually accomplished by
the computer-controlled systems, including the record and
verify system, linear accelerator control, and MLC control
software. The detailed treatment settings contained in the
RT plan or DICOM file are transferred from the planning
system to the record and verify system. Normally, redun-
dant checksums are also in place for each record, ensuring
the safe transfer of data over the computer network. Although
it is perhaps not necessary to list all of the information about
the treatment in the chart, the chart should contain concise
information about the treatment that can be easily verified,
for example, the treatment machine, energy, number of
beams, gantry and couch angles, monitor units (MUs) for
each beam, number of fractions, and fraction doses. The
plan output, such as isodose lines for a selected plan in
different views on CT images, DVHs, and the QA report,
should also be documented. The intensity maps for each
beam should be included if possible.

Advanced Topics in IMRT Treatment
Planning

Inverse planning is at the foundation of IMRT, and its per-
formance critically determines the success of an IMRT treat-
ment. Unfortunately, the currently available inverse planning
formalism is not satisfactory, and the solutions out of so-
called “optimization” systems are often suboptimal.
Considerable effort may be required to compute a clini-
cally acceptable plan, and the final results may strongly
depend on the planner’s experience and understanding of
the planning system. These shortcomings of the existing
systems are familiar to anyone engaged in clinical IMRT
treatment planning. In addition to the prescription doses,
the current planning system requires the user to preselect
the angular variables (gantry, couch, and collimator angles)
and the weighting factors of the involved structures. These
variables and parameters constitute an additional multi-
dimensional space, which is coupled to the beam profiles.

A survey carried out by us indicates that there are five
major problems with current inverse planning systems: (1)
no effective mechanism for incorporating prior experience
into plan optimization; (2) lack of direct control over the
regional dose or, more generally, lack of interactive tools
to guide the planning process; (3) no effective tools for aid-
ing beam placement in IMRT planning; (4) inability to
incorporate organ motion directly; and (5) inefficient inter-



face between planning and delivery systems. Toward estab-
lishment of a clinically efficient and robust inverse plan-
ning system, many investigators have attacked the problems
mentioned above, some of which are the subject of the fol-
lowing sections.

Statistical Analysis—Based Formalism for
Therapeutic Plan Optimization

An important element that is missing in the current inverse
planning formalism is a mechanism for incorporating prior
knowledge into the dose optimization process. In image
analysis and many other fields, it has proven valuable to
include partial knowledge of the system variables into the
optimization process’>>*7> because it provides guidance
in the search for the truly optimal solution. Statistical analy-
sis formalism, which appears in virtually all branches of
the sciences and engineering, affords a natural basis for this
type of application and provides a powerful vehicle to
achieve the goal of treatment plan optimization. Using this
approach, Lian and colleagues demonstrated the feasibili-
ty of incorporating a range of prioritized dose prescrip-
tions into the planning process.’>”® The approach is based
on a newly introduced concept of a preference function,
whose role is to relax our requirement of a rigid dose pre-
scription, to allow a range of doses to be considered, and
to quantify the willingness to accept a dose in that range.
In addition, to make the system less ill-defined, this new
scheme can be used to formalize our clinical knowledge
(such as outcome data'®’?) and incorporate them into dose
optimization. In Figure 2-12, we show the preference func-
tion derived using published data from Eisbruch and col-
leagues’® for parotid glands (four different irradiation
volumes). Coupled with the statistical inference tech-
niques,>>> this should make the inverse planning process
more computationally intelligent.

Another application of the formalism is to include model
parameter uncertainties into dose optimization. For exam-
ple, the radiobiologic formalism involves the use of model
parameters that are of considerable uncertainty. Biologic
“margins” have been used to account for the variability in
radiation sensitivity. This method assumes the patient to
be more sensitive than the mean value for normal tissues
and more resistant than the tumor. EUD-based optimiza-
tion with the incorporation of model parameters has been
demonstrated through the use of a statistical inference tech-
nique.”® Because currently available models for comput-
ing the biologic effects of radiation are simplistic and the
clinical data used to derive the models are sparse and of
questionable quality, the technique is valuable to minimize
the influence of statistical uncertainties.

Multiobjective Optimization
Radiation dose optimization is intrinsically a multiobjec-
tive problem because of the existence of multiple con-
flicting objectives in the system. In the conventional
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FIGURE 2-12. Preference function of parotid salivary glands for four
fixed partial volumes (Veff). In constructing the assumed dose-volume
preference function, the preference level is assumed to be 1 for normal
tissue complication probability (NTCP) < 5% and O for NTCP > 50%. The
reference volume (Vref) refers to the volume of the gland. Adapted from
Eisbruch A et al.” (To view a color version of this image, please refer
to the CD-ROM.)

approach, the multiple objectives are combined to form an
overall objective function through the use of so-called
importance factors.?>80 Contrary to this, the dose deliv-
ered to each structure constitutes one of the objectives in
multiobjective optimization, which is an alternative way to
deal with the trade-offs of multiple conflicting objectives.
The method attempts to obtain all efficient solutions and
provide the planner with a more thorough picture of the
possible options or the trade-offs between the different
objectives. Here an efficient solution (often called the Pareto
solution in multiobjective optimization theory) is defined
as a plan with a good compromise of all of the objectives
involved in the problem or, more precisely, a plan that can-
not be further improved without significantly deteriorat-
ing the dose distribution in one or more organs.
Mathematically, the multiobjective optimization (or vec-
tor optimization)3!-84 is to determine a set of decision vari-
ables that optimizes a vector function whose elements
represent M objective functions without violating the sys-
tem’s constraints. The collection of all efficient solutions is
named the Pareto front. Although the approach is con-
ceptually appealing, practical issues, such as the enormous
computing time required to obtain the Pareto solution and
how to effectively select a plan from the Pareto front, must
be resolved before it finds widespread application in RT
plan optimization. Perhaps a hybrid of single- and multi-
objective techniques is a viable option.

Integration of IMRT Planning and Delivery

IMRT planning is generally performed in two steps: calcu-
lation of the intensity maps of the incident beams and decom-
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position of each intensity map into a series of MLC-shaped
segments using a leaf sequencing algorithm. In practice, the
decoupling of dose optimization and leaf sequencing has a
number of consequences. In addition to the need for the
development of complicated MLC leaf sequencing software,
the number of segments resulting from the approach is often
unnecessarily large. The leaf sequencing algorithm some-
times has to go through additional steps to accommodate
some special hardware constraints of the MLC delivery sys-
tem that can be easily dealt with at the stage of dose opti-
mization. To improve the efficiency of the interface between
the inverse planning and the dynamic MLC delivery systems,
attempts have been made to incorporate machine constraints
and other physical aspects of the delivery system into dose
optimization. The most effective method is perhaps the aper-
ture- or segment-based optimization, which optimizes direct-
ly the objective function with respect to the shapes and
weights of the segmented fields.**>1:8586 In this approach,
the number of segments for each incident beam is prespec-
ified instead of left “floating.” Generally speaking, it is more
computationally involved to optimize an objective function
with respect to the segment shapes and weights because of
the nonlinear dependence of the dose on the leaf coordi-
nates. However, the benefits gained by eliminating the extra
leaf sequencing step and the associated drawbacks outweigh
the slight computational cost.

Interactive Planning Tools for IMRT

The interactive process of IMRT planning is less intuitive
than that of forward planning because of the involvement
of a large number of parameters whose roles in the final
solution are not explicitly known until the completion of
a dose optimization calculation. There is a need for the
planner to adaptively modify or fine-tune a solution toward
the desired direction. For example, frequently after opti-
mization, the dose in only a few small regions is not satis-
factory. Currently, plan modification is achieved by adjusting
structure-dependent system parameters (eg, prescription,
importance factors), which influence not only the dose in
the region of interest but also in other areas. To modify the
dose in a specific region, in principle, one can use ray-tracing
to find the beamlets intercepting the area and adjust their
intensities accordingly. The problem is that there are numer-
ous ways to modify this intensity and the optimal arrange-
ment of the beamlet intensities is not obvious. Cortrutz
and Xing pointed out that local dosimetric behavior can
be more effectively controlled by introducing a region-
dependent penalty scheme and demonstrated the utility of
this approach using a model system and clinical exam-
ples.8788 After the conventional planning is done, they iden-
tify the subvolumes on isodose layouts or the dose interval
on the DVH curve in which the fractional volume needs
to be changed. The local penalty (eg, local importance fac-
tor or local prescription) is then adjusted, and the dose is

reoptimized. The fine-tuning of doses is manually iterative
in nature, and the process can be easily accomplished using
a graphic user interface. Using this technique, it has been
shown that one can eliminate hot and cold spots. Generally,
in dose optimization, there is no net gain. That is, the
improvement in the dose to a region is often accompanied
by a dosimetrically adverse effect(s) at another point(s)
in the same or different structures. Practically, however,
some dose distributions are more acceptable than others.
The important issue here is to find the solution that
improves the dose(s) at the region of interest with a clini-
cally insignificant or acceptable sacrifice.

It is useful to mention that some “hot spot editor” tools
have recently been implemented in commercial systems.
These editors rely primarily on a rudimentary ray-tracing
and is done as follows: (1) visually locating the hot/cold spot;
(2) finding the corresponding beamlets that contribute to
the dose at the point of interest (POI); (3) decreasing/increas-
ing the intensities of one or more of the beamlets; and (4)
updating the dose distribution. In reality, there are multi-
ple beamlets contributing to the dose at the POI and the
problem is determining the optimal way to modify them
so that the doses at other points are compromised minimally.
In the current commercial systems the hot/cold spot is
improved by decreasing/increasing the beamlets with a pre-
designed updating method, which is rarely optimal and often
causes new cold/hot spots somewhere else within the patient.
The approach described by Cortrutz and Xing allows opti-
mal adjustment of the beamlet intensities, thus avoiding the
aforementioned problem. Since the re-optimization is done
on top of the existing solution, it requires only very limited
additional computing time. Furthermore, it is done in the
background (just like the recalculation of dose in step (4)
is done in the background) and the user does not need to
take any additional action.

Automated and Semiautomated Beam Placement

Clinically, gantry angles are selected empirically, and there
is no guarantee that the beam configuration is optimal for
a given patient. Many investigations are exploring the role
of beam configuration selection in IMRT3%:63:6989-91 and
developing tools for beam placement. A promising tech-
nique uses beam’s eye view dosimetrics (BEVD).”*2 The
central idea of this single-beam scoring technique is that
the merit of a beam direction should be measured by what
that beam could achieve dosimetrically without exceeding
the dosimetric or dose-volume constraints of the system.
For computational purposes, a beam portal is divided into
a grid of beamlets. Each beamlet crossing the target is
assigned the maximum intensity that could be used with-
out exceeding the dose tolerances of the sensitive structures
and normal tissue. A forward dose calculation using the
“maximum” beam intensity profile is then performed, and
the score of the given beam direction (indexed by i) is cal-
culated according to®?
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where dy; is the maximum dose delivered to voxel by the
beam from the direction indexed by i, Ny is the number of
voxels in the target, and D; is the target prescription. The
BEVD score function captures the main feature of a plan-
ner’s judgment about the quality of a radiation beam and
allows one to select beam orientations without excessive com-
putational time. For a given patient, the score function for
every possible beam direction is evaluated and the directions
with the highest BEVD scores are identified. Although the
technique does not yield the final beam configuration in a
multifield IMRT treatment, it provides useful information
with regard to which beam directions are potentially good
or bad. During planning, the beams with the highest scores
are considered favorable for the treatment. It is also illus-
trative to point out that the BEVD information can also be
integrated into beam orientation optimization program to
improve the convergence behavior and computational
speed.”?

Hybrid Treatment of IMRT with Other Modalities

IMRT affords one the ability to produce not only spatial-
ly uniform but also purposely nonuniform doses. A nat-
ural application of the feature is to combine IMRT with
other RT modalities to generate a dose distribution that
would otherwise be impossible. Along this line, IMRT has
been considered a method of salvaging suboptimal prostate
implants.”® The combination of IMRT with conventional
electron beam(s) for improving the photon-electron field
matching and for treatments of certain specially shaped
targets has also been investigated.”* Figure 2-13 illustrates
a combined head and neck boost treatment using electron
and intensity-modulated photon beams. In head and neck
cancer, treatment initially involves the irradiation of the
primary tumor and the cervical lymph nodes. After the tol-
erance dose of the spinal cord is reached using opposed lat-
eral photon beams, the lateral fields are reduced off the
spinal cord. The treatment of the anterior neck along with
the primary tumor is continued using the reduced photon
beams, whereas the posterior neck overlying the spinal cord
is treated with lateral electron fields. This requires the match-
ing of an electron field with two opposed photon fields.
For comparison, the combined treatment using the con-
ventional technique (electron + conventional photon
beams) is shown in Figure 2-13. When the electron and
unmodulated photon beams are matched directly, hot spots
greater than 15% above the prescribed dose are seen in the
abutting region. This is reduced to 5% when the proposed
technique was used, with markedly better dose homogeneity
in the abutting region. Furthermore, because of the broad-
ened photon penumbra, the dose homogeneity in the junc-
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tion region becomes less sensitive to patient setup errors.”*

Gated or Synchronized IMRT

IMRT can produce highly conformal doses to targets and a
sharp dose gradient between targets and surrounding crit-
ical structures.5®%>-8 Together with improved patient immo-
bilization, the target margins can be reduced to facilitate
dose escalation. However, margin reduction remains chal-
lenging for treatments in the thoracic regions and other sites
in which intrafraction respiratory motion is significant.”1%0
The delivery of IMRT in either dynamic or static mode can
cause unexpected high- and low-dose regions owing to the
interplay between the movements of the tumor and the MLC
leaves.!0! This issue can, in principle, be improved through
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FIGURE 2-13. Comparison of the isodose distributions of the treatment
plans in a transverse section of a patient with head and neck cancer
when the electron and photon beams were matched directly (4) and
when dynamic intensity modulation was used for the photon beams (B).
Isodose levels are shown at 30%, 50%, 70%, 90%, 95%, 100%, 105%,
110%, and 115%. Note that the 110% and 115% isodose lines are not
present in (B). Reproduced with permission. (To view a color version of
this image, please refer to the CD-ROM.)
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the use of gating or respiration synchronization.!%>-1% (See
Chapter 9 “Respiratory Motion Management” and Chapter
19.4 “Intrafractional Organ Motion and Planning: Emerging
Technology”.)

In gating, tracking, and breath-hold, the treatment
machine is switched “on” or “off” in response to a signal
that is representative of a patient’s breathing motion. Both
passive and active devices can be used to monitor the res-
piratory motion. Ideally, the beam is on only during por-
tions of the breathing cycle when motion is small. The
disadvantage of this technique is the prolonged treatment
time compared with that of nongating approaches.

Motion-synchronized RT is based on two assumptions: (1)
tumor motion is considered to be predictable, and the model
of motion can be established prior to the treatment and is
assumed to be the same (or at least adaptively predictable)
throughout the treatment course, and (2) the treatment deliv-
ery system, either the MLC leaves or the treatment couch, can
be instructed to precisely move to certain locations to adapt
to the motion of the tumor. The main advantage of the motion-
synchronized RT is that the radiation beam is on all of the
time; therefore, there is no treatment time prolongation.
However, several major technical difficulties must be over-
come. Inverse treatment planning in this case must take into
account the functionality of the delivery system.

Another issue is that respiratory motion exists in all
stages of the RT process, including preplanning imaging
and treatment planning and delivery. If respiratory motion
is not accounted for during image acquisition, artifacts may
arise during the image acquisition, leading to the distor-
tion of the target volume. For gated treatment, the same
window should be used for imaging and planning and deliv-
ery so that tumor positions and patient anatomy can be
reproduced accurately. For motion-synchronized RT, sev-
eral sets of CT images representing different phases of the
breathing cycle need to be acquired through either a high-
speed multislice CT scanner or by postprocessing software
to sort the images. All of these images will be used for IMRT
treatment planning, and the resulting MLC leaf sequences
need to be multiplexed for delivery.

Biologically Conformal IMRT

Although the biology of tumors plays a crucial role in the
success of RT, commonly used CT and magnetic resonance
images provide few metabolic data and have significant short-
comings in characterizing benign and malignant tumors.
Recent advancements in functional imaging make it possi-
ble to noninvasively obtain a patient’s metabolic distribu-
tion. Coupled with the technical capability of IMRT in
generating customized three-dimensional dose distributions
with subcentimeter resolution, this may afford a significant
opportunity to improve conventional RT by producing doses
in accordance with biologic requirements.!”~11% Research
effort is focused on integrating functional data into IMRT
treatment planning to improve clinical cancer management.

In general, functional imaging suggests nonuniform dose
distributions to meet the heterogeneous biologic require-
ments. Xing and colleagues identified some relevant issues
and developed a preliminary four-dimensional inverse plan-
ning scheme for functional imaging-guided IMRT.!% The
metabolic and functional data are incorporated effectively
by modulating the prescription doses in the target voxels.
This algorithm enables one to produce a high dose where
there is resistance and/or where tumor burden is large and
to differentially spare the sensitive structures with more
emphasis on functionally important regions.

Delivery Techniques for Fixed-Gantry
IMRT

IMRT delivery with MLC is based on the simple principle
that moving jaws or leaves can be employed to control
the dose delivered to a point. As mentioned previously,
IMRT planning is currently performed in two steps: opti-
mization of intensity maps and MLC leaf sequencing. The
latter is to convert an intensity map into an MLC leaf
sequence file, which specifies the leaf positions as a func-
tion of the fraction of MUs delivered. For the delivery, the
two-dimensional beam fluence is divided into strips cor-
responding to the projection of each leaf pair of the MLC.
Each MLC leaf pair is then required to modulate the flu-
ence along its projection (see Chapter 12 “Delivery
Systems”). For Varian linear accelerators (Varian Medical
Systems, Palo Alto, CA), the leaf pairs are independent,
reducing the conversion of two-dimensional fluence pro-
files into a collection of one-dimensional problems. As a
result, the problem becomes finding a series of leaf posi-
tions (coordinates of leading and trailing leaves) to cover
the area under a one-dimensional fluence function. There
is no unique solution to this problem, leading to a num-
ber of ways to accomplish beam modulation.

MLC-based delivery is generally divided into static step-
and-shoot!'1-116 and dynamic modes.!'7-11 A step-and-
shoot leaf sequence file consists of alternatives of dose-only
and motion-only instances. The step size of MLC move-
ment in this mode is determined by the dimension of the
beamlet in the leaf movement direction. Dynamic delivery
differs from the step-and-shoot mode in that leaf move-
ment and dose delivery are realized simultaneously. These
algorithms are described below.

Step-and-Shoot Delivery

In step-and-shoot delivery, the total dose at a spatial point
is the superposition of contributions from a series of segment
fields (typically, the number of segments is between 20 and
100). The x-ray beam is off when the MLCs travel from one
segment to another. This is perhaps the most intuitive tech-
nique to deliver intensity-modulated fields using MLC. The
QA procedure for this delivery mode is relatively simpler (than



dynamic delivery) because there is no correlation between
the leaf speed and the dose. Instead of describing the algo-
rithm generally, an example is used to illustrate how the step-
and-shoot leaf sequencing methods work.!!!

Figure 2-14 depicts a simple example of an intensity pat-
tern. The intensity in a 6 X 4 cm field is expressed using five
discrete intensity levels. Four 1 cm—wide leaves (numbered
12,13, 14, and 15) are to be used to generate the intensity
pattern. The profiles that each leaf pair must generate are
shown in the individual graphs (the profile required by leaf
pair 12 in this example).

For a modulated field to be delivered at a gantry angle,
each component profile along the center of the j™ leaf pair
must be rendered into a leaf trajectory. Intensity modula-
tion along the profile, as shown in Figure 2-15, is obtained
by sweeping the leading leaf, 12B, and the following leaf,
12A, from left to right along the x-axis. The first step in this
procedure is to divide the total relative beam intensity into
a number of equal intervals of width A®, as indicated in
the illustration. The number of intervals selected to span
the range of the intensity is NI. The second step in the pro-
cedure is to find the intersection of the centers of these pro-
file increment bins with the profile. These points are
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FIGURE 2-14. Intensity map used for illustrating the step-and-shoot
leaf sequencing algorithm. (To view a color version of this image, please
refer to the CD-ROM.)
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FIGURE 2-15. Intensity profile to be produced by leaf pair 12. Reproduced with permission.
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indicated by circles in Figure 2-15. The algorithm requires
that an even number of such points be found. The third
step is to divide the coordinate points into two groups. One
group consists of those points lying on an ascending slope
of the profile in which there is a positive gradient (open
circles in Figure 2-15), and the other group consists of those
points lying on a descending slope of the profile in which
there is a negative gradient (filled circles). The fourth step
is to rank the points in each group. The numbers indicat-
ed are the i-index for the sequence for the twelfth pair of
leaves. Pairing together the coordinates of equal rank order
and assigning the coordinates to each pair of leaves pro-
duces the desired leaf sequence for the k™ gantry angle posi-
tion, {XAijk XBijk}, where the index i ranges from 1 to NI;.
The number of steps required to create the trajectories will
not be the same for all profiles that make up a field. Steps
must be added to the shorter sequences with the leaves
abutting beneath a jaw at one end of the profile so that all
sequences for a field will have the same number of steps.
Another type of step-and-shoot delivery is based on the
sequential reduction of intensities according to a prespeci-
fied scheme.!12113120 The pattern of integers in Figure 2-16
represents an intensity pattern to be delivered using this leaf

5 7 2 4 7
4 1 3 10 5
4 5 2 9 8
3 2 5 7 3
4 7 9 2 4

FIGURE 2-16. Example intensity map used for illustrating the “areal”
leaf sequencing algorithm.

setting sequence. The 5 X 5 cm field is to be delivered with a
maximum beamlet intensity of 10 and a minimum beamlet
intensity within the field of 1. The underlying principle of
the algorithm for determining the sequence is that the most
efficient way to subdivide a sequence is by halves. The sequence
is to be delivered by increments that are powers of 2. In this
case, the increments are 8, 4, 2, and 1. The first step is to set
the leaves in a pattern that can deliver an exposure of 8. There
are four beamlets with intensities of 8 or more. They are
not contiguous, but leaves can be set to form two windows
around the two regions that each deliver an intensity of 8.
This is step 1 in Figure 2-17. After this exposure, all but one
of the beamlet positions still require an exposure of 1 or more.
A leaf pattern can then be found that exposes beamlets that
require a residual exposure of 4 or more. However, two such
regions exist that require two separate sets of leaf settings.

These are steps 2 and 3 in Figure 2-17. The residual intensi-

ty then contains values up to 3, which can be reduced by expo-

sures of 2. Again, to expose all of the beamlets, two leaf patterns
are required, each delivering exposures of 2. These are steps

4 and 5 in Figure 2-17. Then all of the beamlet positions have

either received their full exposure are have a residual value of
1. Two more leaf patterns are required to reach all of the 1

positions and reduce the residual intensity to zero. In all, seven

steps are required to deliver the intensity pattern. The single-

profile step-and-shoot leaf setting algorithm requires 13 steps

to deliver this pattern.

Dynamic Delivery

Let @ (x) be the fluence along the trajectory of the leaf
pair. An example profile is shown in Figure 2-18. To deliv-
er the fluence, one must determine the arrival times at x,
ta(x) for leaf A and tg(x) for leaf B. The units of the arrival
times can be seconds, or they can be expressed as MUs.
The irradiation time interval at x between the opening of
the ray by leaf B and the shielding of the ray by leaf A is
indicated by

Leaf Setting Sequence
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FIGURE 2-18. Example intensity map used for illustrating the dynam-
ic leaf sequencing algorithm. Reproduced with permission.

T(x) = ta(x) = ta(x) = P(x)/®Po,. (7)

Figure 2-19 can then be considered to be a time-position
graph for the two leaves. The upper border of the shaded
area is the leaf A trajectory, and the lower border, or x-axis,
is the leaf B trajectory. The problem with this interpreta-
tion is that it requires leaf B to travel with infinite veloci-
ty and leaf A to travel backward in time! The dilemma
can be resolved by applying a sequence of operations that
transform the two trajectories such that they become deliv-
erable. Note that there are four regions marked along the
fluence profile in which the gradient is either positive or
negative. To remove the time reversal from the continuous
fluence profile, a reflection operator is introduced and is
defined by

T =ATr £[T(x) — A Tr1] (8)

T =ATr +[T(x) — A Tr?] 9)

where A Tgy is the average value of the portion of the pro-
file with a negative gradient within the R1 region around
the first maxima and A Try is the average value of the por-
tion of the profile with a negative gradient within the R2
gradient region around the second maxima. The positive
sign is applied when there is a positive gradient and the neg-
ative sign when there is a negative gradient. The reflection
operator is applied to the curves in the negative gradient
regions to yield curves that do not require the leaves to trav-
el backward in time. The results are shown in Figure 2-22.

The operations have introduced a discontinuity in the
leaf sequence curves that can be removed by applying a
translation operator defined in region R1 by

T7(x)=T(x)+AT (10)

where the increments are selected to remove the disconti-
nuity between region R1 and R2, as illustrated in Figure 2-
20. For the sake of generality, in region R1, the translation
constant is zero. However, now there are still horizontal
portions of the curves that represent infinite velocity of the
leaves. There is always a horizontal segment occurring in
either leaf A or leaf B trajectories across the entire sequence.
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FIGURE 2-19. Time-position graph for the two leaves during the dynam-
ic delivery process. Reproduced with permission.

To remove the infinite velocity, some additional slope is
introduced to each leaf trajectory. This can be achieved
by applying a shear operator to the entire lengths of both
leaf trajectories. The shear operator is defined by

T7(x) =T7(X) + X/Umax (11)

This operator tilts the upper and lower horizontal bounds of
each segment of the sequence by an amount determined by
the maximum leaf velocity, resulting in a sequence that can
be practically delivered. The slope of the shear is the inverse
of the maximum velocity that the leaves can move, Umax.
The resulting leaf setting sequence is shown in Figure 2-20.
The leaves begin the sequence closed at the left side of the field
and end the sequence closed together at the right side of the
field. In a region in which the original fluence gradient is pos-
itive, the leading leaf, leaf B, moves with a constant speed deter-
mined by the maximum velocity, and the trailing leaf A moves
along the trajectory given in equation 11. In those regions in
which the fluence gradient is negative, the trailing leaf, leaf
A, moves with the maximum velocity, whereas the leading leaf
moves along the trajectory given in equation 11.

The algorithm used to calculate the velocity modula-
tion of the slower leaf can be derived by differentiating
equation 12 with respect to distance:

dt” /dx=1/u (x) =d1”/dx + 1/Umax (12)

The derivative of T with respect to x can be obtained from
equation 10 and is simply the derivative of T in all subdi-
visions of the trajectory. The derivative of T" can be obtained
from equations 8 and 9 and depends on the sign of the flu-
ence gradient:

[ < 00 dr/dx=-dt/dx (13a)
[@> 00 dt/dx = +dt/dx (13b)

The derivative of T can be seen in equation 7 to be
dt/dx = (d®/dx)/Dg (14)

assuming that the variation in the incident fluence is neg-
ligible with respect to x. Using these results in equation 12,
the velocity modulation equation becomes
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FIGURE 2-20. Trajectories of leaf A and leaf B during the dynamic delivery process. Reproduced

with permission.

1/u(x) = £ (dP/dx)/Po + 1/Umax (15)

where the positive sign applies to positive fluence gradient
regions and the negative sign applies to negative fluence
gradient regions. By rearranging, one arrives at

U(X) = Umax /[ 1% Umax [0dP/dx)/Po] (16)

This equation can be used to generate the velocity modu-
lation required to deliver the fluence profile, starting with
the leaves closed together at one side of the profile and end-
ing with the leaves closed together again at the other. The
leaf setting sequence computed by the velocity equation
for the original fluence in Figure 2-18 is shown in Figure
2-20. The results are exact.

Our experience with both step-and-shoot and dynam-
ic delivery indicates that there is no clear-cut advantage for
any one of the methods except in some special situations.
The main disadvantage of the step-and-shoot method is
a sacrifice of accuracy in the delivery of beam profiles that
have steep gradients. The dynamic method delivers the
required distribution by sweeping the leaf pair across the
beam and becomes inefficient in producing “large and flat”
fluence segments.'?! It is possible to implement an algo-
rithm combining the step-and-shoot and the dynamic deliv-
eries to use the advantages of each.!?? This scheme would
determine the slope of each segment of the intensity pro-
file and then choose the suitable delivery method.

Related Issues in MLC-Based Delivery

Unlike conventional RT with static MLC fields, significant
dosimetric issues must be addressed when IMRT delivery
is used. Most of the algorithms in the literature, however,
assume an ideal MLC and ignore the influence of many
physical effects and the mechanical constraints of a real-
istic MLC, such as transmission and head scatter, tongue-
and-groove effects, and collision constraints for adjoining
leaf pairs.

Yang and Xing proposed an algorithm to account for
the leaf transmission and head scatter effects in step-and-
shoot leaf sequencing.!?? In their approach, an error func-
tion, defined as the least square difference between the
desired and the delivered fluence maps, is introduced.
Mathematically, this function is expressed as

F =Y [, /)= o, G, )]
y (17)

where ¢(i,j) and ¢,(,j) are the calculated and the desired
fluences of beamlet (i,j), respectively. In equation 18, only
those beamlets with nonzero fluences in the desired inten-
sity map are considered because one cannot physically pro-
duce a beamlet with zero fluence.

The calculation starts with the MLC leaf sequence file
derived from the desired fluence map without considering



transmission and head scatter. The effects of transmis-
sion and head scatter are minimized by iteratively adjust-
ing the fractional MUs in the initial MLC leaf sequences
using a downbhill simplex optimization method. A three-
source model'?* is used to evaluate the relative head scat-
ter contribution for each segment. The three effective sources
are the source for the primary photons from the target and
two extrafocal photon sources for the scattered photons
from the primary collimator and the flattening filter, respec-
tively. The algorithm has been assessed by comparing the
dose distributions delivered by the corrected leaf sequence
files and the theoretical predication, calculated by Monte
Carlo simulation using the desired fluence maps and sev-
eral clinical IMRT cases. The deviations between the desired
fluence maps and the ones calculated using the corrected
leaf sequence files are less than 0.3% of the maximum MU
for the test field and less than 1.0% for the clinical IMRT
cases. The experimental data demonstrate that both absolute
and relative dose distributions delivered by the corrected
leaf sequences agree with the desired ones within 2.5% of
the maximum dose or 2 mm in high—dose gradient regions.
It is found that the influence of the two effects is more pro-
nounced in the absolute dose than in the relative dose.
Figure 2-21 illustrates a measured absolute dose profile for
a test field. In performing the measurements, MLC leaf
sequences with different correction schemes described in
the figure caption were used.

The influences of rounded leaf ends and interleaf trans-
mission,'?° tongue-and-groove effect,'?® and the effect of
back-scattered photons from the moving jaws and MLC
leaves on the monitor chamber signal'?” have been studied
using accurate models with realistic MLC geometries. It has
been pointed out that the tongue-and-groove effect may be
significant when underdosage occurs between two adjacent
leaf pairs owing to the fact that the region between is always
covered by the tongue, the groove, or both.'?%12 Algorithms
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have been developed to either minimize or remove this effect
when MLC leaf sequences are generated.!!*130-133 Many
researchers have shown that the tongue-and-groove effect
can result in an underdose of as much as 10 to 15% in some
special situations.'?$12%134135 However, a Monte Carlo study
by Deng and colleagues suggested that the difference between
the dose distributions with and without the tongue-and-
groove effect was hardly visible for an IMRT treatment with
multiple gantry angles in a clinical setting.!?® More thor-
ough investigations on the tongue-and-groove effect and
other physical factors are needed to understand the sys-
tem and to determine better solutions.

Finally, the inclusion of various physical factors is made
simple if segment-based inverse planning is used. This rep-
resents one of the major advantages of the new type of
inverse planning approach with integration of machine
constraints.

Quality Assurance

IMRT adds a new degree of freedom to conventional RT
and allows one to tune the dose distribution on an indi-
vidual beamlet level. At the same time, it significantly
increases the level of sophistication and complexity of the
planning and delivery systems. With more and more insti-
tutions starting IMRT programs, it becomes increasingly
important to have robust and efficient QA tools for clini-
cal use. Otherwise, the gain from IMRT may be lost in a
nonoptimal QA procedure and/or be offset by the increased
cost of treatment. In general, IMRT QA has three aspects:
commissioning and testing of the inverse treatment plan-
ning and IMRT delivery system, routine QA of the MLC
delivery system, and patient-specific validation of each
treatment plan. The first task is mainly concerned with the
integrity of the IMRT system. The second involves the nor-
mal operation of the dynamic delivery system, and the third
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FIGURE 2-21. (A), A schematic diagram of the test field. The field includes five consecutive 2.0 x 10 cm? segments and attempts to produce a 10
% 10 cm? open beam. (B) The measured absolute dose profiles along the midline of leaf pair 21A-21B in the isocenter plane at a depth of 5 cm in
solid water for the test field are shown on the left. The measured results of the single-segment 10 x 10 cm? open field with 30 monitor units are
shown in the central black curve as a benchmark. The red curve is obtained with correction of head scatter and transmission. The top black and bot-
tom blue curves represent the calculated dose profiles with only head scatter or transmission considered.'?3 Reproduced with permission. (To view
a color version of this image, please refer to the CD-ROM.)
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task ensures accurate and safe treatment of the patient.
Recently, there have been many excellent reports on IMRT
QA-related issues.®®136-13 Some practical aspects of IMRT
QA are also discussed in Chapter 13 “Commissioning and
Dosimetric Quality Assurance” and Chapter 14 “Quality
Assurance Processes and Future Directions”. In this sec-
tion, the QA procedure and some recent advancements are
summarized.

Commissioning and Testing

To ensure that the system can be used safely and accu-
rately, the inverse treatment planning system must be
commissioned prior to clinical use. Commissioning and
testing consist of four separate but related steps. The first
is concerned with the system’s ability to accurately com-
pute series of broad beam data. This type of testing is rudi-
mental but useful to identify potential problems quickly.
The second study tests the dose model and the delivery
system with several specially designed intensity patterns.
The accuracy of dose calculation for intensity-modulat-
ed beams can thus be assessed. The third type of study
examines the system’s functionality and dosimetric cor-
rectness for a number of hypothetical phantom cases. In
addition to dose calculation, the functionality of dose
optimization is evaluated at this level of tests. Figure 2-
22 shows two examples of this type of measurement using
a cylindrical water phantom and ion chamber.!4? The last
type of study is to test the system using clinical cases to
ensure the dosimetric accuracy and integrity of the sys-
tem. This study evaluates the combination results of image
acquisition and segmentation, geometric and dosimetric
calibration of the planning system, planning and dose cal-
culation, and data transfer. The dose distributions for sin-
gle or multiple fields are usually done using an ion
chamber and films in a phantom. Other dosimeters, such

as thermoluminescent dosimeters and semiconductor
detectors, can also be employed. The American Association
of Physicists in Medicine (AAPM) Task Group 40 and
Task Group 53 reports provide guidelines on this topic
and remain the benchmark documents on the sub-
ject.141142 This subject has also been discussed extensively
in recent publications,!36:137,143

Routine Machine QA

Intensity modulation is achieved with computer-controlled
MLC using either static!!2144-146 or dynamic delivery tech-
niques. To ensure that the planned dose distributions are
safely and accurately delivered, an important requisition is
the normal operation of the delivery system, which is war-
ranted by routine machine QA. The principles and practice
of QA for RT can be found in the classic documents of Van
Dyk and Purdy,'*” as well as the report of AAPM Task Group
40."*1 For IMRT, several things specific to the IMRT MLC
control system need to be checked periodically. Currently,
the routine accuracy check of MLC leaf positioning in most
clinics is performed using radiographic films with special-
ly designed MLC leaf sequences.'*314° Besides being time
consuming, the results of film measurements are difficult
to quantify and interpret. A few research groups have
attempted to use an electronic portal imaging device (EPID)
for quantitative verification of MLC leaf positions with edge
detection algorithms.!>%~133 The detection precision is
limited to ~ 1 mm owing to the finite pixel size and the
signal-to-noise ratio of the EPID, which is clearly insuffi-
cient for routine QA of the MLC delivery system. Here we
describe a quantitative technique!> for MLC leaf positioning
QA developed recently at Stanford University. Given its sim-
plicity, efficiency, and accuracy, we believe that the tech-
nique is ideally suitable for routine MLC QA and should
have widespread clinical application in the future.

FIGURE 2-22. Hypothetical intensity-modulated radiation therapy plans generated for a cylindric water phantom and the measured dose distribu-
tions. The phantom is positioned with its axis perpendicular to the couch top and is supported by a bearing, allowing for rotation about its axis. This
allows for measuring the dose of a multifield plan without gantry rotation. The measurements were made using the Varian dynamic multileaf colli-
mator modulating 4 MV x-ray beams. The plans were generated using the CORVUS system. Reproduced with permissionfrom Xing et al. 0 (To view
a color version of this image, please refer to the CD-ROM.)
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FIGURE 2-23. Relative output versus the displacement of leaves 20A, 208, 10A, and 10B from
their desired positions. The symbols are the measured data, and the solid lines are the least square
fitting of the corresponding data sets. Reproduced with permission from Yang Y and Xing .15

The Stanford MLC QA technique uses the fact that when
a finite-sized detector is placed under a leaf, the relative
output of the detector will depend on the relative fractional
volume irradiated. A small error in leaf positioning would
change the fractional volume irradiated and lead to a devi-
ation of the relative output from the normal reading. For
a given MLC and detector system, the relationship between
the relative output and the leaf displacement can be easily
established through experimental measurements and used
subsequently as a quantitative means for detecting possi-
ble leaf positional errors. Figure 2-23 illustrates a set of cal-
ibration curves for different leaves obtained using an ion
chamber and a Varian CL 2300C/D accelerator with an 80-
leaf MLC.!>* Our results indicate that the method could
accurately detect a leaf positional change of ~ 0.1 mm. The
principle of the method is independent of the type of MLC
and detector. The method overcomes the previously stat-
ed shortcomings of both film measurement and edge detec-
tion techniques and provides a reliable means for
quantitative examination of MLC positional accuracy.

The principle has also been applied to MLC leaf posi-
tioning QA using an EPID,'>> which has the advantage of
simultaneously detecting positional errors of any leaf at any
point. In this technique, the active imaging region of an
EPID is divided into a number of small rectangular regions
of interest, each of which is centered at a point at which the
leaf positioning accuracy is to be examined (Figure 2-24).
Every region of interest here acts as a finite-sized detector,

and the integral signal from it can be processed based on
the pre-established relation between the integral signal and
the leaf displacement at the point. The EPID-based system
also allows us to take the dosimetric influence of the adja-
cent leaves into account. For this purpose, the integral sig-
nal at a region of interest is expressed as a weighted sum of
the contributions from the displacements of the leaf above
the point and the adjacent leaves. The linear coefficients of
the system equations are determined by fitting the integral
signal data for a group of predesigned MLC leaf sequences
to the known leaf displacements that are intentionally intro-
duced during the creation of the leaf sequences. Once the
calibration is done, the system can be used for routine MLC
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FIGURE 2-24. Diagram of the geometric setup using an electronic por-
tal imaging device (EPID) to examine leaf positioning accuracy. (To view
a color version of this image, please refer to the CD-ROM.)
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leaf positioning QA to detect possible leaf errors. Table 2-
1 shows a set of test data obtained using the technique.
Overall, our results show that the proposed technique is
superior to the conventional edge-detecting approach in
two aspects. First, it deals with the problem in a systematic
approach and allows one to take into account the influence
of the adjacent MLC leaves effectively. Second, it has a much
higher signal-to-noise ratio and is thus capable of quanti-
tatively measuring extremely small leaf positional dis-
placements. The technique can effectively detect a relative
lead positional error as small as 0.1 mm at an arbitrary point
within the field in the absence of an EPID setup error and
0.3 mm when this uncertainty is considered.

IMRT Treatment Plan Validation

The tasks of patient-specific QA can be divided into geo-
metric and dosimetric verification. The former is concerned
with the geometric accuracy of the IMRT beams, includ-
ing isocenter and portal verification. The dosimetric veri-
fication includes a quantitative check of fluence maps,
radiation doses at multiple points, and, in some cases, the
dose distribution. Currently, the dosimetric verification is
primarily done experimentally.

Geometric Verification

A pair of orthogonal simulation films (or digital recon-
struction radiographs [DRRs]) is used to verify the patient
position by comparison with portal films. In 3DCRT, a por-
tal image is taken using the double-exposure technique,
one with the customized radiation port and the other with

TABLE 2-1. Detected Leaf Positional Errors with Different
Intentionally Introduced Errors for Different B-Bank Leaves at
Two Locations

Location Leaf Number IIE, mm DLPE, mm

X=-10cm 168 0.3 0.31
20B 16 1.55
23B -05 -0.51
31B 0.1 0.11
33B 04 0.42
34B 05 0.49
37B -0.4 -0.42
44B -0.2 -0.18
45B 2.3 2.37
50B -05 -0.50

X=0cm 13A 0.8 0.76
14A -0.2 -0.19
19A -1.2 -1.20
22A =0.1 -0.09
27A 2.1 2.66
31A 0.1 0.11
39A -0.8 -0.79
44A 0.2 0.22
45A -0.3 -0.28
46A -18 -1.81

DLPE = detected leaf positional error; IIE = intentionally introduced error.

a larger rectangular open field, so that both the field bound-
ary and selected patient anatomy can be visualized. A sim-
ulation image for an IMRT field can be created as well using
the MLC boundary as the port of the radiation field. An
example of such a portal image for an IMRT head and neck
treatment is shown in Figure 2-25. For portal image expo-
sure, an MLC field that defines the field boundary needs to
be extracted from the IMRT leaf sequence file. The MLC-
defined field aperture can be appended to the DRR to be
displayed together with the patient’s anatomy. The DRR in
the beam’s eye view, as shown on the left in Figure 2-25, is
used as a reference for comparing with the portal image for
target localization during the treatment.!¢

Dosimetric Verification and Independent Dose and
Fluence Map Calculations

No consensus has emerged regarding what dosimetric quan-
tities need to be examined to validate an IMRT treatment
plan. Patient-specific dosimetric QA typically consists of
dose measurements at multiple points and fluence map
measurements. Some institutions also perform film dosime-
try for each patient treatment. Because of the inherent com-
plexity of the problem, it may be some time before definitive
recommendations come from national organizations. In
general, the goal of the dosimetric verifications is to ensure
that the delivered dose distribution agrees with the one
from the treatment planning system. The descriptions on
equipment and procedure for these measurements have
been the subject of a few recent review articles. The fun-
damental philosophy of IMRT QA and our experience with
computer-based patient-specific QA are presented here.
First, one should note that the 3SDCRT approach based
on point dose verification is insufficient to validate an IMRT
plan because of the independence of the involved beam-
lets. In 3DCRT, verification is mainly concerned with the
MU calculation for each incident field. An independent

FIGURE 2-25. Top: A left digitally reconstructed radiograph /eft with
the field boundary of the IMRT field. A double-exposure portal image
for the same field is shown on the right. Bottom: An anterior posterior
digitally reconstructed radiograph /eft with the field boundary of the
IMRT field. A double-exposure portal image for the same field is shown
on the right. These images are used by physicians to verify the maxi-
mum extent of the IMRT treatment fields.



calculation of the dose or MU at a point based on primi-
tive machine data is recommended by AAPM Task Group
40.141 Because the fluence of a uniform or wedged field is
spatially correlated, information of the dose at a point can,
in principle, be used to estimate the dose in other points
provided that the off-axis information is known. However,
this is not the case for intensity-modulated fields because
the weights of the beamlets across a field are independent.
The correctness of the dose at a spatial point warrants, at
most, only the correctness of the beamlets passing through
or nearby that point. To validate an IMRT treatment plan,
the spatial distributions of the beamlets must be verified
in addition to the point dosimetric check.

In practice, the above two tasks can be achieved by the
verification of point dose(s) and fluence maps. The flu-
ence map of an incident beam is usually normalized to
the maximum beamlet weight in the beam. For a given
intensity-modulated field, the verification of the fluence
map or beamlet correlation ensures the correctness of the
doses at other points once the dose(s) at one or more
points inside the field is examined. Together with the point
doses, they provide information on the integrity of the
IMRT fields.

We now discuss how to efficiently carry out the two types
of tests. Obviously, the most robust method is to measure
the point doses and fluence maps to validate an IMRT plan.
As depicted as the dashed lines in Figure 2-26, the approach
checks both planning and delivery. Its drawback is that an
intensive effort is needed to carry out the measurement for
each field or patient. Alternatively, one can separate the QA
of the delivery and planning systems, as illustrated by the
solid lines at the bottom. Although QA of the delivery sys-
tem is imperative, its goal should be practically achiev-
able by periodical checks rather than actual measurement
before each patient’s treatment. The division of IMRT QA
into machine QA and patient-specific QA allows us to check
the integrity of an IMRT treatment plan by using computer

Fluence map
from inverse
planning system

FIGURE 2-26. Intensity-modulated radiation
therapy (IMRT) plan validation process. The
fluence map/point dose verification is depict-
ed by the dashed line on the top. The com-
puter-based approach is outlined as the solid
lines at the bottom of the figure. BIS = beam
imaging system ; EPID = electronic portal imag-
ing device; MLC = multileaf collimator; QA =
quality assurance.
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calculation, simplifying the pretreatment QA. In fact, the
same philosophy has been used in 3DCRT over the years,
in which a manual calculation is often used instead of actu-
al point dose measurement to validate the patient-specific
MU settings.

Algorithms to perform the independent point dose and
fluence map calculations for IMRT have been reported recent-
ly.157-162 Here a general formalism for the IMRT point dose
check used at Stanford University Hospital (the software,
IMSure, has been commercialized by Prodigm Inc., Chico,
CA) is described. In this approach, the dose at an arbitrary
spatial point is expressed as a summation of the contribu-
tions from all of the beamlets with the amplitude of each
beamlet modulated by a dynamic modulation factor. The
dynamic modulation factor represents the fractional time
that the beamlet is “open” during the dynamic delivery process
and can be computed once the MLC leaf sequences are
known.!'>® The dose at a point (x, 3 z) is written as

i
D{x,y,z)= MUY C D
] (18)

where the DY, is the dose contribution to the calculation
point per MU from the m-th beamlet when it is open, MU
is the total monitor unit, and Cj, is the dynamic modula-
tion factor. When the MLC leaf transmission and head scat-

ter effects are taken into account, Cy, can be calculated by!®°
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where fi is the fractional MU of the k-th segment and A
is the radiation field shape of the k-th segment. Sc,.« is the
head scatter factor of the beamlet m in the k-th segment,
Sc”is the head scatter factor for the rectangular field defined
by the jaws, and a is the average transmission factor. The
head scatter factor Sc.x for each beamlet in a segment is
calculated using the three-source model described earli-
or. 124

Computer verification of the fluence maps or the MLC
leaf sequences can be done similarly. The software reads in
the leaf sequences and simulates the motion of the MLC
leaves.!%® The computed fluence map is then compared
quantitatively with the intended map from the treatment
planning system. A set of predefined QA indices are intro-
duced to measure the “closeness” between the computed
and the reference maps. The implication of the simulation
is twofold. By comparing the recalculated fluence map with
that from the planning system, it examines the function-
ality of the leaf sequencer of the planning system and ensures
that the leaf sequence is executable and correct. It can also
detect possible errors that occur during the transfer process
of the leaf sequence file from the planning computer to the
MLC workstation. The goal of the simulation is to warrant
that, assuming that a rigorous independent QA of the MLC
system has been performed so that the dynamic MLC can
accurately execute the instruction of a leaf sequence file,
the execution of the leaf sequence will generate the desired
fluence map should it pass the simulation test.

Because of the simplicity and reliability of computer-
based IMRT plan validation, it becomes clinically practi-
cal to enforce QA of the point doses and fluence maps on
an individual patient or field basis. Furthermore, the method
is valid for both step-and-shoot and dynamic deliveries. The
utility of the computer verification has been demonstrated
by the many clinical IMRT cases at many institutions, and
its widespread use should simplify the QA procedure.
However, it is important to keep in mind that experimen-
tal measurement is the only reliable source for IMRT plan
validation. Any computer-based validation tool must be val-
idated by experimental means before its clinical use.

Special IMRT Techniques and Machine
Limitations

Concurrent Boost

One of the advantages of IMRT is its ability to deliver dif-
ferent dose levels to different regions simultaneously so that
target volumes with different prescription doses can be planned
and delivered together (see Chapter 18.7, “Simultaneous
Integrated Boost: Emerging Technology”).”®!%* This approach
has several potential advantages. Besides the efficiency of plan-
ning and delivery with a single plan, the resulting dose dis-
tribution can be more optimal. The conventional sequential
boost strategy employs two or more independent plans in

which the initial fields cover the elective regions and smaller
boost fields focus on the primary target. The boost dose is
often limited by the tolerances of nearby OAR, which have
been given a significant amount of radiation. If planned simul-
taneously using IMRT, it is possible to distribute the dose
evenly among fractions, and the system also has a greater
degree of freedom to optimize the intensity among many
beams. There are biologic advantages as well; for example,
the shortened treatment course and increased dose per frac-
tion to primary tumors can often be translated into a high-
er biologically equivalent dose, thus increasing the probability
of local control.

Treatment of Large Tumors

The treatment of large tumors necessitates the use of large
treatment fields. Depending on the implementation of the
MLC by the linear accelerator vendors, the maximum field
size formed by dynamic MLC may be different from those
imposed by the collimators (jaws). Typically, the maximum
field size is much smaller. For example, in the Varian MLC,
the jaws and the MLC carriages do not move with the leaves.
The leaf length in the current model of the MLC is 14.5 cm
(projected at the isocenter). Given that each leaf pair must
travel from the left boundary to the right boundary of the
beam aperture and the back end of any leaf cannot travel past
the edge of the jaw, the maximum width of the field aperture
that can be accommodated in one sweep of leaves is also lim-
ited to 14.5 cm. The maximum IMRT field size that can be
delivered in one sweep is 40 x 14.5 c¢m for an 80-leaf MLC
(or a 120-leaf MLC) or 26 X 14.5 cm for a 52-leaf MLC.

To treat a target volume wider than 14.5 cm, an incident
field must be split into two or more subfields unless some
special techniques are used.'® A simple step “break” in the
middle, as is usually done for static treatments with MLC,
may be implemented. Although this is certainly feasible,
it could lead to field matching problems because uncer-
tainties in patient setup and leaf positioning may cause
undesirable hot or cold spots in the junctioning region.
Given that the intensity varies across the field in IMRT any-
way, it is natural to consider splitting the beam into com-
ponents with overlap between them having variable intensity
in the overlap region. A simple dynamic “feathering” tech-
nique for splitting large fields has been proposed by Wu
and colleagues.'% In this method, the intensity-modulated
field is divided into two (or more) components. The com-
ponents overlap each other, and the intensity gradually
decreases in the overlap region for one component and
increases for the other. The sum of intensities remains the
same as for the original field. Each component is delivered
using the sweeping window technique with the dynamic
MLC. This method provides a smooth transition from one
field component to the next, thereby eliminating the field
junction problems. The dynamic feathering technique may
also be applied to split large static fields to minimize the
junction problem.?*167 The feathering technique has been



extended to treat the whole abdomen area, in which split-
ting into more than two beams in the leaf motion direc-
tion may be necessary. Also, field sizes larger than 40 cm
may be required in the cephalad-caudad direction, leading
to the use of multiple isocenters, and feathering (not split-
ting) is helpful.!68

Dose Matching of an IMRT Plan with a 3DCRT or
an IMRT Plan

One of the important problems in RT of breast cancer,
Hodgkin’s disease, head and neck cancer, and cervical can-
cer is the matching of an IMRT dose distribution for the
treatment of part of the target volume(s) with a conven-
tional 3DCRT or IMRT plan for the treatment of a differ-
ent portion of target volume(s). Ideally, dose optimization
of the second part should take into account the existing
dose from the previous plan to optimally match the two
dose distributions.?*169

The two treatment plans that need to be matched are
generally produced sequentially. The first plan used for
treating part of the tumor volume(s) is obtained with the
consideration of the second plan. To reduce the sensitivi-
ty of potential setup errors, an attempt needs to be made
to “blur” the penumbra or dose gradient in the direction
perpendicular to the matchline. Specifically, instead of a
sharp dose gradient, the dose is allowed to extend by an
additional 1.5 to 5 cm in the direction perpendicular to the
matchline. In this transition region, the dose is forced to
fall off linearly. The overlap is generally determined by the
desired sensitivity against setup error. After the first plan
is done with the extended transitional dose gradient region,
the second IMRT plan is optimized with consideration of
the existing doses of the first plan. The goal of the second
dose optimization is to obtain an IMRT plan that yields a
uniform composite dose distribution in the target vol-
ume(s) and (including the transitional regions) while spar-
ing the sensitive structures. The approach takes advantage
of the state-of-the-art intensity modulation and dose opti-
mization techniques and provides an effective solution to
the timely clinical problem of IMRT dose matching. In
addition to better dose uniformity in the target volumes in
the matchline region, it reduces the sensitivity of the doses
to setup uncertainties in the matchline region. The tech-
nique is not yet available in commercial planning systems
but should be implemented in the near future.

Radiation Protection Issues

Generally speaking, IMRT tends to use more beams (than
traditional approaches) to conform the isodose curves to
the shape of the tumor volume. As a consequence, a larger
volume of normal tissue is exposed to lower doses as opposed
to a smaller volume of normal tissue irradiated by higher
doses in 3DCRT. In addition, the number of MUs is often
increased by a factor of 2 to 3 owing to dynamic intensity
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modulation, increasing the total-body exposure, which may
increase the risk of secondary malignancies.!”%!7! Hall and
Wuu theoretically compared IMRT and 3DCRT and sug-
gested that both factors tend to increase the risk of secondary
cancers.!”? Altogether, IMRT is likely to almost double the
incidence of secondary malignancies compared with con-
ventional RT (from about 1 to 1.75% for patients surviving
10 years or more). The risk may be larger for patients with
longer survival rates (and for younger patients), but the ratio
should remain the same (see Chapter 3 “Radiobiology of
IMRT” and Chapter 30 “Pros and Cons of IMRT”).

Reduction of the number of segments using more
advanced dose optimization techniques and/or appropri-
ate shielding of the treatment room are crucial to reduce
the potential risks to hospital personnel. The National
Council on Radiation Protection and Measurements has
developed an empiric method for designing shielding
against ionizing radiation that will protect workers and the
general public from harmful radiation exposures.!”174
These methods have been used for several decades, and
additional information that can be used in conjunction
with these methods has since been published.!”>-177 A thor-
ough study of IMRT shielding design has been presented
by Mutic and colleagues'”® and Low.!”?

Summary

Institutions worldwide are attempting or planning to inte-
grate IMRT technology into their clinics. Before IMRT imple-
mentation, it is important to understand the physical
principles behind the overall process of inverse planning
and dynamic deliveries. This will help in making better deci-
sions regarding which system best suits each clinical envi-
ronment and facilitates the implementation process. The
efficiency and quality of IMRT treatment depend on many
factors. At this point, it seems that timely developments of
inverse planning and QA techniques are highly desirable to
make IMRT a truly superior and robust treatment modal-
ity. With these advancements, it is anticipated that IMRT
will provide improved dose distributions with less effort in
treatment planning, delivery, and verification.
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4.1 Introduction

4.1.1 Molecular and Functional Imaging

For much of the last century, medical imaging has
been focused on faster and more detailed anatomic
pictures of the human body. The accomplishment of
the wisible human project of the National Library
of Medicine (hutp:/fwww.nlm.nih.govfresearchfvisible)
represents perhaps one of the most important mile-
stones in these developments. With the goal of
producing a system of knowledge structures that trans-
parently links visual knowledge forms to symbolic
knowledge formats such as the names of body parts,
a complete, anatomically detailed, 3D representations
of the normal male and female human bodies were
rendered based on transverse CT, MR and cryosection

images of male and female cadavers. Medical imaging
has been an integral part of radiation therapy since
the discovery of X-rays and the imaging techniques,
such as X-ray, CT, MRI and ultrasound (US) imaging,
are the foundation for the modern radiation therapy
maodalities that are routinely used in clinics, such as 3D
conformal radiation therapy, intensity modulated ra-
diation therapy (IMRT), stereotactic radiosurgery, and
brachytherapy. Indeed, the development of radiation
therapy has strongly relied on the imaging technology
and, historically, almost every major advancement in
imaging science would bring radiation therapy to a new
level.

In general, medical imaging is involved in all key
steps of radiation treatment (Fig. 1), One of the most
important uses of imaging techniques is the delineation
of a tumor target. Despile the tremendous successes,
the anatomic imaging techniques such as CT/MRIfUS
are inherently deficient in that they can only reveal spa-
tial changes in physical properties and fail to provide
basic biological information that is much needed for the
optimal management of the patients. Clinically, tumor
biology plays an important rele in the diagnosis, treal-
ment decision-making, and assessment of therapeutic
response of various diseases. It is thus highly desirable
to develop imaging techniques capable of revealing the
spatial biology distribution of the patients. Toward this
goal, a new branch of science, referred to as molecular
imaging, is emerging as a result of research efforts in cel-
lular biclogy and imaging techniques over the years. The
development of cellular and molecular imaging provides
significant opportunities for the radiation discipline to
take the patient’s biological information into the radia-
tion therapy treatment decision-making process and to
truly individualize cancer radiotherapy.

4.1.2 IMRT as a Means of Producing Biclogically
Conformal Dose Distributions

IMRET is an advanced form of external beam irradiation
and represents a radical change in radiation oncology

e T
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Role of Molecular/functional Imaging in Radiation Therapy

Pafterm of
successilalve L
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Pre-treatment | MAT planmig Fosl-freatment
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Fig. 1. A schematic of radiation treatment process. Molecular/
lunctional imaging plays an important role in each of the key
steps (represented by blocks) of the radiation treatment process

practice [1-3]. This new process of treatment planning
and delivery shows significant potential for improving
the therapeutic ratio and offers a valuable tool for dose
escalation andfor radiation toxicity reduction. Prelim-
inary published results and unpublished results from
several institutions indicate that with IMRT, radiation
doses to sensitive structures can be reduced significantly
while maintaining adequate target dose coverage [4-15].
Because in many elinical situations the dose to the tumor
volume is limited by the tolerance doses of the sensitive
structures, it is considered likely that IMET will improve
local control and lead to an increase in survival rate
for certain cases through dose escalation. In addition,
IMRT has the potential to improve the efficacy of treat-
ment planning and delivery in routine clinical practice
with the use of computerized planning and treatment
process. For details about IMRT inverse treatment plan-
ning, delivery and quality assurance, we refer the readers
to the related chapters of this book.

In IMRT, each incident beam is divided into a num-
ber of beamlets (typically, the size of a beamlet is in the
order of 1 x 1cm), allowing us to modify the dose dis-
tribution on an individual beamlet level. Using IMRT,
it is possible to produce not only spatially uniform but
alse non-uniform dose distributions. Recently, Lin zetal
and several other researchers [ 16-21] have emphasized
the technical capability of “dose painting” and “dose
sculpting” offered by IMRT, which allows customized
dose delivery to the target volume(s) with centimeter or
even sub-centimeter spatial resolution. Using functional
and molecular imaging techniques to identify spatial
metabolic distribution and hence guide the delivery of

Molecular/Functional Image-Guided IMRT Treatment

Molecular/functional

radiation represents a paradigm shift in radiation oncol-
ogy and this type of “biclogically” conformal radiation
therapy may provide a significant opportunity to im-
prove conventional IMRT treatment. A timely question
is how to integrate the state-of-the-art functional imag-
ing technologies into radiation therapy techniques such
as IMRT to positively impact clinical cancer manage-
ment. The purpose of this chapter is to review recent
progress in this endeavor and identify the important
issues in the development of biologically conformal
radiation therapy.

4.2 Functional and Molecular Imaging and
Biologically Conformal Radiation Therapy

Current IMRT treatment plan optimization is based
on the assumption of uniform biology distribution
within the target volume and is aimed at achieving
geometrically conformal dose distributions under the
guidance of CT/MRI images. In reality, it has long been
recognized that the spatial distribution of biclogical
properties in most tumors and normal tissues are het-
erogeneous. With the advent of various molecular and
functional imaging techniques, it is now possible to
map out the biology distribution on a patient specific
basis. To use the spatially heterogeneous biology in-
formation derived from the new imaging modalities
to guide IMRT dose painting and sculpting process,
several key problems need to be resolved. In general,
the melecularffunctional imaging-guided IMRT gener-
ally favors non-uniform dose distributions and requires
a plan optimization formalism in voxel domain to
deal with the biological heterogeneity. In addition, new
methods of specifying the desired doses and a mecha-
nism for inter- and intra-structural tradeoff, which will
be explained below, must be introduced to efficiently
produce metabolically/functionally conformal doses. In
Fig. 2 we list the general steps of biologically conformal
IMRT treatment. Each of the steps in Fig, 2 is discussed
below,

Fig.2. Procedure of bio-
logically conformal IMRT
treatment
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4.2.1 Integration of Functional and Molecular Imaging
into IMRT Planning

The area of molecularffunctional imaging is rapidly
evolving [22-24). Many of the molecular imaging
modalities (such as fluorescent and bioluminescent
imaging, optical imaging, SPECT/PET with novel
1sotopes/contrast agents targeting some specific mo-
lecular markers, MR spectroscopic imaging (MRSI))
are being developed for tumor specific imaging
and deployed into clinical practice. Presently, MRSI,
PET{SPECT and micro-bubble based ultrasound are
perhaps the most mature modalities and available for
guiding radiation therapy treatment. Details on various
molecular and functional imaging modalities have been
given elsewhere in this volume (see Verhey and van de
Wiele chapters) and will not be repeated here. The re-
mainder of this chapter will be focused on the issues
related to the integration of the new imaging modalities
into radiation treatment planning,

4.2.2 Image Registration

Radiation therapy treatment planning is mainly CT
image-based because it provides complete geometric
data and electran density information for accurate dose
calculation. To utilize the biological information derived
from the new image maodalities, we must map the imag-
ing data onto treatment planning CT images. The level
of complexity of image coregistration depends on the
imaging techniques involved and specific software tools
often need to be developed in order to use some of
the new i:naging madalities, such as fluorescent im ages,
endoscopic images and endorectal images. Sometimes,
deformable model-based image registration is required
if the shape(s) of the involved organs are deformed from
its normal shape,

Let us take endorectal MRSI as an example. The
introduction of endorectal surface coils significantly
improves spatial resolution and signal-to-noise ratio
(SNR) of prostate MR imaging and allows evaluation
of tumer location, tumaor volume, capsular penetra-
tion, invasion of neurovascular bundle, and seminal
vesicle involvement, which is crucial for accurate trear-
ment planning. Endorectal-coil based MRS] has also
been shown effective in distinguishing between areas
of cancer and normal prostatic epithelium through dif-
ferences in [choline + creatine]fcitrate ratio [25-28].
However, the use of endorectal probe inevitably dis-
torts the prostate and other soft tissue organs, making
it impossible 1o fuse directly the acquired image data
onto treatment planning CT. [n Fig.3 we show the
difference between endorectal coil-based MRI defined
and CT-defined prostate volume [29]. In order to fuse
MREI/MRSI with treatment planning CT, it is necessary

Fig.3. Difference between endorectal coil-based MRI def; ned and
treatment planning CT-defined prostate volumes

to develop an effective deformable image registra-
tion procedure. Otherwise, the gain from the use of
the state-or-the-art imaging techniques may be lost
due to the inferior performance of image registra-
tion.

Zaider et al. [30] have reported a translation and
scaling based registration method to map MRS posi-
tive volumes onto the CT and ultrasound images. In
their approach, the coordinates of the boundary and
the center of mass were used to linearly interpolate
the positions of the mapped voxels. A larger discrep-
ancy was found for regions with more severe distortion
(4mm}. Lian et al. [29, 31] have developed an effec-
tive deformable image registration algorithm to map
the MRI/MRS! information obtained using a rigid or
inflatable endorectal probe onto CT images and to ver-
ify the accuracy of the registration by phantom and
patient studies, For this purpese, a thin plate spline
(TPS) transformation first introduced by Bookstein [32]
was implemented to establish voxel-to-voxel correspon-
dence between a reference image and a fpating image
with deformation. The idea is to find a continuous
transformation to minimize the landmark difference
in two images. The detailed description of the TPS
transformation can be found in Bookstein's original
Paper [32]. To access the Quality of the registration,
an elastic phantom with a number of implanted fidu-
cial markers was designed. Radiographic images of the
phantom were obtained before and after a series of in-
tentionally introduced distortions. After mapping the
distorted phantom to the original one, the displace-
ments of the implanted markers were measured with
respect to their ideal positions and the mean error
was calculated. Phantom studies showed that using the
deformable registration method the mean landmark
displacement error was 0. 62+ (.39 mm when the dis-
tortion was of the order of 23.07 mm. A deformable
model seems to he necessary to map faithfully the
metabolic information onto the treatment CT images.
When a non-deformable method based on a rigid-body
transformation and scaling was used for the same dis-
tortion, the mean displacement of the fiducials with
fespect to their actual positions was found to be as
large as 12.95+40.57 mm. In patient studies, CT im-
ages of two prostate patients were acquired, followed by
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3-Tesla (3 T) MR images with a rigid endorectal coil. For
both patient studies, significantly improved registration
accuracy was achieved, The prostate centroid position
displacement was 0. 58 + 0,10 mm and the coincidence
index was 92, 6 & 5.1% when a TPS transformation was
used. Different from the non-deformable approach, the
TPS-based registration accommodates the organ dis-
tortion and enables us to achieve significantly higher
MRI/MRSI and CT image registration accuracy. More
advanced finite element method is also developed to
attack the problem [33].

4.2.3 Quality Assurance of Molecular
and Functional Imaging Modalities

Any new imaging modality requires validation and
quality assurance to ensure that the obtained images
faithfully reflect the reality. In anatomical imaging, sur-
rogate phantoms have been widely used for assessing the
geometric and physical (e.g., electron density) proper-
ties of the images. For radiation therapy application,
Mutic et al. have reported a simple design of a PET
phantom to validate the image registration of PET and
CT images [34]. Generally speaking, for a biological
imaging modality, validation of geometric accuracy rep-
resents only one facet of the problem. The accuracy of
the pixel values of the imaging modality also needs
our attention. While the specific meaning of the pixel
values depends on the modality, let us take an MRSI
phantom (Fig. 4) constructed by Hunjan et al. as an ex-
ample to illustrate the basic idea. The multi-modality,
multi-purpose phantom is suitable for quality assur-
ance testing of fusion data from MRI, MRSI and CT

320 mm

images [35]. The phantom contains fiducial markers
that are simultaneously MR, MRS, and CT-visible. To
examine the accuracy of MRSI for brain tumor, the phan-
tom was filled with a brain-mimicking solution with
an insert holding eight vials containing calibrated so-
lutions of precisely varying metabolite concentrations
that emulated increasing grade/density of brain tumor,
Metabolite ratios calculated from fully relaxed 113, 2D
and 3D MRS data for each vial were compared to cal-
ibration ratios acquired in vitro using a 9.4-Tesla MR
spectrometer. Figure 5 shows an axial scout scan of
the MRS metabolite ratio quantitation standard show-
ing the calibration vials 1-8. The resulting single voxel
MR spectra are shown inset next to corresponding vials
and a linear fit between the Choline/NAA ratio (NAA:
N-acetyl-aspartate, sce Verhey chapter, this volume)
of the calibration solutions obtained at 9.47T vs the
calibration-solution-filled vials inside the phantom ob-
tained at 1.5 T. For detailed information on the design of
the phantom and measurements, please refer to [35,36].

4.2.4 Inverse Treatment Planning

In general, molecularffunctional imaging could impact
the current radiation therapy treatment in two funda-
mental aspects [16, 20, 37]. First, it offers an effective
means for us to delineate more accurately the tumor and
define better the treatment volume. Second, it provides
valuable spatial metabolic information in the tumor and
sensitive structures, While it is straightforward to mod-
ify the radiation portals to accommodate any changes
in treatment volume, new methods of dose optimiza-
tion and medical decision-making must be developed

Fig.4. A photo of quality as-
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Fig. 9. Dosimetric capability map of the larget and sensitive struc-
ture for a hypothetical case with five equally spaced beams. The
data for each strocture is normalized to unity. The left panel shows

modeling of the system are [45]: (i) how to determine
the non-uniform dose prescription provided that the
biolegy distribution is known; and (ii) how to find
the optimal solution. While the latter problem is sim-
ilar to that in conventional IMRET inverse planning,
the solution to the first problem entails some theo-
retical considerations. Earlier we used the metabolic
abnormality index to characterize phenomenologically
the tumor burden. Using a radiobiological model, it is
possible to relate the prescription dose to the more fun-
damental radiobiology parameters to optimize the cell
killing.

Let us start with the linear quadratic (LQ) model.
We include the effect of tumor cell proliferation but ig-
nore the quadratic term. The model parameters include
clonogen density (g}, radiosensitivety («), and prolifer-
ation rate (y). The time dependence of the parameters
are ignored. The tumor control probability, TCF;, for
a tumor voxel 3, can be expressed as

TCP; = exp [—pn. Viexp {—:r,:[),- + hﬂ?’” {4

where V; is the volume of voxel i, gy, a; and y; repre-
sent the initial clonogen density, radiosensitively and
proliferation rate in voxel ¢, respectively, I is the dose
received by voxel i, and AT is the overall treatment time.
In Eq. 4, y; = In 2{T; where T}; is the potential doubling
time in voxel i. TCP for the tumor is given by

TCP = ﬂ TCP, (5)

A constraint from the normal cells within the tumor
volume given by

2_: ml = F, 16l
i

should be applied to determine the tumor dose prescrip-
tion, where nr; 15 the mass of voxel 4, E, isthe integral dose
in tumor. The problem now becomes to maximize the
TCP under the constraint of Eq. 6, which can be solved

=
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the complete geometry of the hypothetical structures. The capa-
bility maps of the target and sensitive structure are enlarged and
shown in the right panel

using the method of Lagrange multipliers [46]. When
the mass and volume are equal for all tumor voxels, the
desired prescription dose of a voxel is given by

J},:ﬁf),—l(y..—f,-}aT—iln(ﬂ) o
o; a; a; N e
where 17, is the reference dose for the voxel with refer
ence radiobiological parameters (o, o, ). In general,
I3 should be set to a value that yields a clinical sensi-
ble TCP at the reference voxel. For a given disease site,
the radiation dose used in current clinical practice with
“intent to cure” can be used as a good starting point in
selecting the value of I7;. Once the desired dose prescrip-
tion distribution is determined, IMRT inverse planning
optimization can proceed by numerically maximizing
the TP while maintaining the NTCP below a certain
limit. One can also take a “hybrid” approach by using
the conventional objective function with the above dose
prescription.

Plan Review Tools

The sheer volume of information inherent in 30 treat-
ment designs and the corresponding dose distributions
make display and objective assessment problematic, De-
tails of a dose-distribution’s spatial characteristics can
be obtained by examining 2D isodose curves in a slice-
by-slice fashion; however, this is a quasi-quantitative,
time-consuming process and is not an efficient way to
compare competing plans even for conventional IMRT.
In the presence of an additional degree of freedom
(metabolic abnormality), the problem is exacerbated by
the breakdown of uniform dose assumption within the
targel volume, One of the commonly used approaches is
the reliance on data reduction techniques in the quan-
titative assessment of alternative plans, DVH is one of
the most widely used data reduction techniques. This
technique enables the ready reduction of the complex
31 data set of a treatment design into the 21} display
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of the fractional volume of a given structure receiving
doses within a particular range. Unfortunately, this tool
becomes invalid for metabolicf/functional plan evalua-
tion because of possibly non-uniform biological status
of the involved structures. Metabolic/ffunctional IMRT
techniques require new plan review tools to facilitate
the quantitative comparison of plans. The following
are a few tools that are potentially useful for the plan
review of molecularffunctional image guided IMRT
plans:

1. Effective dose ratio distribution: The effective dose
ratio at a voxel is defined as the ratio of the physi-
cal dose and the prescribed dose. This distribution
considers both the spatial dose distribution and
the metabolic map and provides intuitive informa-
tion on the geometric location of underdosing or
overdosing regions. In this way, we can use con-
ventional wisdom to evaluate a metabolicf/functional
based dose distribution. The DVH corresponding
to the effective dose ratio distribution is also use-
ful.

2. DVH clusters: In practice, not all underdosingfover-
dosing are equally significant and underdosing/over-
dosing at a certain metabolic level maybe more
acceptable than at other metabolic levels. A cluster of
DWHs, each corresponding to an incremental range
of metabolic activity of interest, may provide useful
tool to address the issue. The cluster of DVHs can
be used to check the overall dosimetric behavior at
an individual metabolic level. Figure 7 represents an
example of a three-level DVH cluster. For a sensi-
tive structure with functional data available, similar
techniques apply.

3. Functional dose-volume histogram (FDVH}): Dis-
tribution of functional importance appears to be
heterogeneous in some normal organs and functional
imaging modalities such as MRSI or PET/SPECT
may provide valuable information about the spa-
tial distribution of the functional importance. The
FDVH, originally introduced by Lu et al. [47], Marks
et al. [48], and Alber and Nusslin [49] may prove to
be a useful plan review tools. A similar histogram
function can be introduced for the tumor, but its
usefulness needs to be justified.

4. Modified TCP and NTCP calculation tools: The con-
ventional TCP and WTCP formula [38, 39, 50, 51]
need to be modified to take into account the
heterogeneous biology distribution [52-54]. This
modification should be straightforward if the spa-
tial distributions of radiobiclogical parameters are
known, Although it is difficult to obtain quantitative
results from the model calculation because of the un-
certainties in the parameters, qualitative conclusions
regarding the deliberately non-uniform irradiation
scheme can be drawn and may shed useful insight
into the problem [54].

4.3 Conclusion

The success of radiotherapy critically depends on the
imaging modality used for treatment planning and the
level of integration of the available imaging informa-
tion. The use of functional/metabolic imaging provides
us much more than a tool to delineate better the bound-
ary of a tumor target. Together with anatomical CT or
MRI images, functional imaging affords valuable 3D
structural plus 1D metabolic data for both tumor and
sensitive structures, valuable for guiding us to design
spatially non-uniform dose distributions to deliver high
doses to where the tumor burdens are high and dif-
ferentially spare the sensitive structures according to
the functional importance distributions. The integra-
tion and utilization of the functional data in radiation
therapy treatment planning become increasingly im-
portant to improve clinical cancer management. While
it is straightforward to modify the radiation portals to
accommeodate any changes in treatment volume, new
methods of dose optimization and medical decision-
making must be developed to take full advantage of the
metabolic information and IMRT. How to achieve bio-
logically conformal doses, instead of the geometrically
conformal dose djstribution, presents a new challenge to
radiation oncology discipline, Hopefully, with the efforts
{rom multiple institutions, the new approach of imaging,
planning and decision-making will be resolved. Ulri-
mately, whether using deliberately inhomogeneous dose
distributions obtained under the guidance of functional
imaging such as MRSI can improve patient survival and
reduce the side effects associated with radiation treat-
ment should be established through extensive clinical
trials,
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